scholarly journals Somatosensory perceptual training enhances motor learning by observing

2018 ◽  
Vol 120 (6) ◽  
pp. 3017-3025 ◽  
Author(s):  
Heather R. McGregor ◽  
Joshua G. A. Cashaback ◽  
Paul L. Gribble

Action observation activates brain regions involved in sensory-motor control. Recent research has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that observation also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent motor learning by observing. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the arm, and subjects made judgments about the position of their hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive perception. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field. Subjects in the Trained Learning group, who had superior proprioceptive acuity before observation, benefited more from observing learning than subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing. NEW & NOTEWORTHY We show that improving somatosensory performance before observation can improve the extent to which subjects learn from watching others. Somatosensory perceptual training may prime the sensory-motor system, thereby facilitating subsequent observational learning. The findings of this study suggest that the somatosensory system supports motor learning by observing. This finding may be useful if observation is incorporated as part of therapies for diseases affecting movement, such as stroke.

2018 ◽  
Author(s):  
Heather R. McGregor ◽  
Joshua G.A. Cashaback ◽  
Paul L. Gribble

AbstractNeuroimaging and neurophysiological studies in humans have demonstrated that action observation activates brain regions involved in sensory-motor control. A growing body of work has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that learning also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent observation-related gains in motor performance. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the subject’s passive upper limb and he or she made judgments about the position of the hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive acuity. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field (FF). We found that subjects in the Trained Learning group, who had superior proprioceptive acuity prior to observation, benefited more from observing learning compared to subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing.AbbreviationsFF:Force fieldPD:Maximum perpendicular deviationIQR:interquartile rangeThe authors report no financial interests or conflicts of interests.


2015 ◽  
Vol 114 (1) ◽  
pp. 677-688 ◽  
Author(s):  
Heather R. McGregor ◽  
Paul L. Gribble

Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning.


2013 ◽  
Vol 110 (8) ◽  
pp. 1804-1810 ◽  
Author(s):  
Nicolò F. Bernardi ◽  
Mohammad Darainy ◽  
Emanuela Bricolo ◽  
David J. Ostry

Observing the actions of others has been shown to affect motor learning, but does it have effects on sensory systems as well? It has been recently shown that motor learning that involves actual physical practice is also associated with plasticity in the somatosensory system. Here, we assessed the idea that observational learning likewise changes somatosensory function. We evaluated changes in somatosensory function after human subjects watched videos depicting motor learning. Subjects first observed video recordings of reaching movements either in a clockwise or counterclockwise force field. They were then trained in an actual force-field task that involved a counterclockwise load. Measures of somatosensory function were obtained before and after visual observation and also following force-field learning. Consistent with previous reports, video observation promoted motor learning. We also found that somatosensory function was altered following observational learning, both in direction and in magnitude, in a manner similar to that which occurs when motor learning is achieved through actual physical practice. Observation of the same sequence of movements in a randomized order did not result in somatosensory perceptual change. Observational learning and real physical practice appear to tap into the same capacity for sensory change in that subjects that showed a greater change following observational learning showed a reliably smaller change following physical motor learning. We conclude that effects of observing motor learning extend beyond the boundaries of traditional motor circuits, to include somatosensory representations.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jonas A. Hosp ◽  
Andreas R. Luft

The motor system has the ability to adapt to environmental constraints and injury to itself. This adaptation is often referred to as a form of plasticity allowing for livelong acquisition of new movements and for recovery after stroke. We are not sure whether learning and recovery work via same or similar neural mechanisms. But, all these processes require widespread changes within the matrix of the brain. Here, basic mechanisms of these adaptations on the level of cortical circuitry and networks are reviewed. We focus on the motor cortices because their role in learning and recovery has been investigated more thoroughly than other brain regions.


2014 ◽  
Vol 26 (9) ◽  
pp. 2028-2041 ◽  
Author(s):  
Alan D. A. Mattiassi ◽  
Sonia Mele ◽  
Luca F. Ticini ◽  
Cosimo Urgesi

Action observation activates the observer's motor system. These motor resonance responses are automatic and triggered even when the action is only implied in static snapshots. However, it is largely unknown whether an action needs to be consciously perceived to trigger motor resonance. In this study, we used single-pulse TMS to study the facilitation of corticospinal excitability (a measure of motor resonance) during supraliminal and subliminal presentations of implied action images. We used a forward and backward dynamic masking procedure that successfully prevented the conscious perception of prime stimuli depicting a still hand or an implied abduction movement of the index or little finger. The prime was followed by the supraliminal presentation of a still or implied action probe hand. Our results revealed a muscle-specific increase of motor facilitation following observation of the probe hand actions that were consciously perceived as compared with observation of a still hand. Crucially, unconscious perception of prime hand actions presented before probe still hands did not increase motor facilitation as compared with observation of a still hand, suggesting that motor resonance requires perceptual awareness. However, the presentation of a masked prime depicting an action that was incongruent with the probe hand action suppressed motor resonance to the probe action such that comparable motor facilitation was recorded during observation of implied action and still hand probes. This suppression of motor resonance may reflect the processing of action conflicts in areas upstream of the motor cortex and may subserve a basic mechanism for dealing with the multiple and possibly incongruent actions of other individuals.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207476 ◽  
Author(s):  
Olivia M. Lapenta ◽  
Elisabetta Ferrari ◽  
Paulo S. Boggio ◽  
Luciano Fadiga ◽  
Alessandro D’Ausilio

2013 ◽  
Vol 14 (3) ◽  
pp. 329-350 ◽  
Author(s):  
Alessandra Sciutti ◽  
Ambra Bisio ◽  
Francesco Nori ◽  
Giorgio Metta ◽  
Luciano Fadiga ◽  
...  

Understanding the goals of others is fundamental for any kind of interpersonal interaction and collaboration. From a neurocognitive perspective, intention understanding has been proposed to depend on an involvement of the observer’s motor system in the prediction of the observed actions (Nyström et al. 2011; Rizzolatti & Sinigaglia 2010; Southgate et al. 2009). An open question is if a similar understanding of the goal mediated by motor resonance can occur not only between humans, but also for humanoid robots. In this study we investigated whether goal-oriented robotic actions can induce motor resonance by measuring the appearance of anticipatory gaze shifts to the goal during action observation. Our results indicate a similar implicit processing of humans’ and robots’ actions and propose to use anticipatory gaze behaviour as a tool for the evaluation of human-robot interactions. Keywords: Humanoid robot; motor resonance; anticipation; proactive gaze; action understanding


Sign in / Sign up

Export Citation Format

Share Document