scholarly journals UDP-glucose:anthocyanidin 3-O-glucoside-2”-O-glucosyltransferase catalyzes further glycosylation of anthocyanins in purple Ipomoea batatas

2018 ◽  
Author(s):  
Hongxia Wang ◽  
Chengyuan Wang ◽  
Weijuan Fan ◽  
Jun Yang ◽  
Ingo Appelhagen ◽  
...  

AbstractGlycosylation contributes to the diversity and stability of anthocyanins in plants. The process is catalyzed by various glucosyltransferases using different anthocyanidin aglycones and glycosyl donors. An anthocyanidin 3-O-glucoside-2”-O-glucosyltransferase (3GGT) from purple sweetpotato (cv. Ayamurasaki) served for the catalytic conversion of anthocyanidin 3-O-glucoside into anthocyanidin 3-O-sophoroside, which is functionally different from the 3GGT ortholog of Arabidopsis. The phylogenetic analysis indicates regioselectivity of 3GGT using UDP-xylose or UDP-glucose as the glycosyl is divergent between Convolvulaceae and Arabidopsis. Homology-based protein modeling and site-directed mutagenesis of Ib3GGT and At3GGT suggested that the Thr-138 of Ib3GGT is a key amino acid residue for UDP-glucose recognition and plays a major role in sugar donor selectivity. The wild type and ugt79b1 mutants of Arabidopsis plants overexpressing Ib3GGT produced the new component cyanidin 3-O-sophoroside. Moreover, Ib3GGT expression was associated with anthocyanin accumulation in different tissues during Ayamurasaki plant development and was regulated by the transcription factor IbMYB1. The localization assay of Ib3GGT showed that further glycosylation occurs in the cytosol and not endoplasmic reticulum. The present study revealed the function of Ib3GGT in further glycosylation of anthocyanins and its Thr-138 is the key amino acid residue for UDP-glucose recognition.

1997 ◽  
Vol 323 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Lakshmi KASTURI ◽  
Hegang CHEN ◽  
Susan H. SHAKIN-ESHLEMAN

N-linked glycosylation can profoundly affect protein expression and function. N-linked glycosylation usually occurs at the sequon Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro. However, many Asn-Xaa-Ser/Thr sequons are glycosylated inefficiently or not at all for reasons that are poorly understood. We have used a site-directed mutagenesis approach to examine how the Xaa and hydroxy (Ser/Thr) amino acid residues in sequons influence core-glycosylation efficiency. We recently demonstrated that certain Xaa amino acids inhibit core glycosylation of the sequon, Asn37-Xaa-Ser, in rabies virus glycoprotein (RGP). Here we examine the impact of different Xaa residues on core-glycosylation efficiency when the Ser residue in this sequon is replaced with Thr. The core-glycosylation efficiencies of RGP variants with different Asn37-Xaa-Ser/Thr sequons were compared by using a cell-free translation/glycosylation system. Using this approach we confirm that four Asn-Xaa-Ser sequons are poor oligosaccharide acceptors: Asn-Trp-Ser, Asn-Asp-Ser, Asn-Glu-Ser and Asn-Leu-Ser. In contrast, Asn-Xaa-Thr sequons are efficiently glycosylated, even when Xaa = Trp, Asp, Glu or Leu. A comparison of the glycosylation status of Asn-Xaa-Ser and Asn-Xaa-Thr sequons in other glycoproteins confirms that sequons with Xaa = Trp, Asp, Glu or Leu are rarely glycosylated when Ser is the hydroxy amino acid residue, and that these sequons are unlikely to serve as glycosylation sites when introduced into proteins by site-directed mutagenesis.


2002 ◽  
Vol 46 (9) ◽  
pp. 3035-3038 ◽  
Author(s):  
Barry G. Hall

ABSTRACT In an early example of DNA shuffling, Stemmer (W. P. C. Stemmer, Nature 370:389-390, 1994) demonstrated a dramatic improvement in the activity of the TEM-1 β-lactamase toward cefotaxime as the consequence of six amino acid substitutions. It has been pointed out (B. G. Hall, FEMS Microbiol. Lett. 178:1-6, 1999; M. C. Orencia, J. S. Yoon, J. E. Ness, W. P. Stemmer, and R. C. Stevens, Nat. Struct. Biol. 8:238-242, 2001) that the power of DNA shuffling might be applied to the problem of predicting evolution in nature from in vitro evolution in the laboratory. As a predictor of natural evolutionary processes, that power may be misleading because in nature mutations almost always arise one at a time, and each advantageous mutation must be fixed into the population by an evolutionary pathway that leads from the wild type to the fully evolved sequence. Site-directed mutagenesis was used to introduce each of Stemmer's six substitutions into TEM-1, the best single mutant was chosen, and each of the remaining five substitutions was introduced. Repeated rounds of site-directed mutagenesis and selection of the best mutant were used in an attempt to construct a pathway between the wild-type TEM-1 and Stemmer's mutant with six mutations. In the present study it is shown (i) that no such pathway exists between the wild-type TEM-1 and the supereffective cefotaxime-hydrolyzing mutant that was generated by six amino acid substitutions via DNA shuffling (Stemmer, Nature 370:389-390, 1994) but that a pathway to a fourfold more efficient enzyme resulting from four of the same substitutions does exist, and (ii) that the more efficient enzyme is likely to arise in nature as the result of a single mutation in the naturally occurring TEM-52 allele.


2002 ◽  
Vol 33 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Hiroyasu Yamanaka ◽  
Tomohiko Nomura ◽  
Naoyuki Morisada ◽  
Sumio Shinoda ◽  
Keinosuke Okamoto

2003 ◽  
Vol 69 (8) ◽  
pp. 4830-4836 ◽  
Author(s):  
Takeharu Tsuge ◽  
Tamao Hisano ◽  
Seiichi Taguchi ◽  
Yoshiharu Doi

ABSTRACT Aeromonas caviae R-specific enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJAc) is capable of providing (R)-3-hydroxyacyl-CoA with a chain length of four to six carbon atoms from the fatty acid β-oxidation pathway for polyhydroxyalkanoate (PHA) synthesis. In this study, amino acid substitutions were introduced into PhaJAc by site-directed mutagenesis to investigate the feasibility of altering the specificity for the acyl chain length of the substrate. A crystallographic structure analysis of PhaJAc revealed that Ser-62, Leu-65, and Val-130 define the width and depth of the acyl-chain-binding pocket. Accordingly, we targeted these three residues for amino acid substitution. Nine single-mutation enzymes and two double-mutation enzymes were generated, and their hydratase activities were assayed in vitro by using trans-2-octenoyl-CoA (C8) as a substrate. Three of these mutant enzymes, L65A, L65G, and V130G, exhibited significantly high activities toward octenoyl-CoA than the wild-type enzyme exhibited. PHA formation from dodecanoate (C12) was examined by using the mutated PhaJAc as a monomer supplier in recombinant Escherichia coli LS5218 harboring a PHA synthase gene from Pseudomonas sp. strain 61-3 (phaC1 Ps). When L65A, L65G, or V130G was used individually, increased molar fractions of 3-hydroxyoctanoate (C8) and 3-hydroxydecanoate (C10) units were incorporated into PHA. These results revealed that Leu-65 and Val-130 affect the acyl chain length substrate specificity. Furthermore, comparative kinetic analyses of the wild-type enzyme and the L65A and V130G mutants were performed, and the mechanisms underlying changes in substrate specificity are discussed.


1998 ◽  
Vol 330 (2) ◽  
pp. 615-621 ◽  
Author(s):  
Stefano CAMPANER ◽  
Loredano POLLEGIONI ◽  
D. Brian ROSS ◽  
S. Mirella PILONE

When analysed by isoelectric focusing, D-amino acid oxidase from the yeast Rhodotorula gracilis normally consists of three molecular isoforms (pI 7.8, 7.4 and 7.2, respectively) all with the same N-terminal sequence. However, only a single band of pI 7.8 is detected with the recombinant wild-type protein expressed in E. coli. To determine whether the molecular basis of this heterogeneity is due to proteolysed forms of the protein, we treated R. gracilisd-amino acid oxidase with various proteases. Limited proteolysis by chymotrypsin and thermolysin produced truncated and nicked monomeric holoenzymes containing two polypeptides of ≈ 34 kDa (Met1-Leu312) and one of ≈ 5 kDa (Ala319-Arg364 with chymotrypsin or Ala319-Ala362 with thermolysin). On the other hand, treatment with endoproteinase Glu-C gave a dimeric holoenzyme lacking the C-terminal SKL tripeptide. This cleavage of Glu365-Ser366 peptide bond caused the disappearance of the three isoelectric bands and a single homogeneous band (pI 7.2) appeared. To study this protein form, we used site-directed mutagenesis to produce a mutant form of R. gracilisD-amino acid oxidase lacking the SKL C-terminal tripeptide (which is the targeting sequence PTS1 for peroxisomal proteins). As expected, the SKL-deleted mutant gave a single band (pI 7.2) in isoelectric focusing. The three-band pattern of native yeast enzyme was generated by in vitro experiments using an equimolar mixture of the wild-type (pI 7.8) and the SKL-deleted recombinant (pI 7.2) DAAOs. The microheterogeneity of yeast DAAO thus stems from the association of two polypeptide chains differing in the C-terminal tripeptide, giving three different holoenzyme dimers.


Sign in / Sign up

Export Citation Format

Share Document