scholarly journals Simultaneous representation of sensory and mnemonic information in human visual cortex

2018 ◽  
Author(s):  
R. L. Rademaker ◽  
C. Chunharas ◽  
J. T. Serences

Traversing sensory environments requires keeping relevant information in mind while simultaneously processing new inputs. Visual information is kept in working memory via feature selective responses in early visual cortex, but recent work had suggested that new sensory inputs wipe out this information. Here we show region-wide multiplexing abilities in classic sensory areas, with population-level response patterns in visual cortex representing the contents of working memory concurrently with new sensory inputs.

2015 ◽  
Vol 27 (11) ◽  
pp. 2117-2125 ◽  
Author(s):  
Reshanne R. Reeder ◽  
Francesca Perini ◽  
Marius V. Peelen

Theories of visual selective attention propose that top–down preparatory attention signals mediate the selection of task-relevant information in cluttered scenes. Neuroimaging and electrophysiology studies have provided correlative evidence for this hypothesis, finding increased activity in target-selective neural populations in visual cortex in the period between a search cue and target onset. In this study, we used online TMS to test whether preparatory neural activity in visual cortex is causally involved in naturalistic object detection. In two experiments, participants detected the presence of object categories (cars, people) in a diverse set of photographs of real-world scenes. TMS was applied over a region in posterior temporal cortex identified by fMRI as carrying category-specific preparatory activity patterns. Results showed that TMS applied over posterior temporal cortex before scene onset (−200 and −100 msec) impaired the detection of object categories in subsequently presented scenes, relative to vertex and early visual cortex stimulation. This effect was specific to category level detection and was related to the type of attentional template participants adopted, with the strongest effects observed in participants adopting category level templates. These results provide evidence for a causal role of preparatory attention in mediating the detection of objects in cluttered daily-life environments.


2013 ◽  
Vol 13 (9) ◽  
pp. 1349-1349
Author(s):  
J. Bergmann ◽  
E. Genc ◽  
A. Kohler ◽  
W. Singer ◽  
J. Pearson

2021 ◽  
pp. 1-16
Author(s):  
Qing Yu ◽  
Bradley R. Postle

Abstract Humans can construct rich subjective experience even when no information is available in the external world. Here, we investigated the neural representation of purely internally generated stimulus-like information during visual working memory. Participants performed delayed recall of oriented gratings embedded in noise with varying contrast during fMRI scanning. Their trialwise behavioral responses provided an estimate of their mental representation of the to-be-reported orientation. We used multivariate inverted encoding models to reconstruct the neural representations of orientation in reference to the response. We found that response orientation could be successfully reconstructed from activity in early visual cortex, even on 0% contrast trials when no orientation information was actually presented, suggesting the existence of a purely internally generated neural code in early visual cortex. In addition, cross-generalization and multidimensional scaling analyses demonstrated that information derived from internal sources was represented differently from typical working memory representations, which receive influences from both external and internal sources. Similar results were also observed in intraparietal sulcus, with slightly different cross-generalization patterns. These results suggest a potential mechanism for how externally driven and internally generated information is maintained in working memory.


2020 ◽  
Author(s):  
Munendo Fujimichi ◽  
Hiroki Yamamoto ◽  
Jun Saiki

Are visual representations in the human early visual cortex necessary for visual working memory (VWM)? Previous studies suggest that VWM is underpinned by distributed representations across several brain regions, including the early visual cortex. Notably, in these studies, participants had to memorize images under consistent visual conditions. However, in our daily lives, we must retain the essential visual properties of objects despite changes in illumination or viewpoint. The role of brain regions—particularly the early visual cortices—in these situations remains unclear. The present study investigated whether the early visual cortex was essential for achieving stable VWM. Focusing on VWM for object surface properties, we conducted fMRI experiments while male and female participants performed a delayed roughness discrimination task in which sample and probe spheres were presented under varying illumination. By applying multi-voxel pattern analysis to brain activity in regions of interest, we found that the ventral visual cortex and intraparietal sulcus were involved in roughness VWM under changing illumination conditions. In contrast, VWM was not supported as robustly by the early visual cortex. These findings show that visual representations in the early visual cortex alone are insufficient for the robust roughness VWM representation required during changes in illumination.


2013 ◽  
Vol 23 (15) ◽  
pp. 1427-1431 ◽  
Author(s):  
Anke Marit Albers ◽  
Peter Kok ◽  
Ivan Toni ◽  
H. Chris Dijkerman ◽  
Floris P. de Lange

2010 ◽  
Vol 6 (6) ◽  
pp. 1091-1091
Author(s):  
S. Offen ◽  
D. Schluppeck ◽  
D. J. Heeger

2019 ◽  
Author(s):  
Jasper E. Hajonides ◽  
Freek van Ede ◽  
Mark G. Stokes ◽  
Anna C. Nobre

AbstractSelective attention can be directed not only to external sensory inputs, but also to internal sensory representations held within visual working memory (VWM). To date, this has been studied predominantly following retrospective cues directing attention to particular items, or their locations in memory. In addition to item-level attentional prioritisation, recent studies have shown that selectively attending to feature dimensions in VWM can also improve memory recall performance. However, no study to date has directly compared item-based and feature-based attention in VWM, nor their neural bases. Here, we compared the benefits of retrospective cues (retro-cues) that were directed either at a multi-feature item or at a feature-dimension that was shared between two spatially segregated items. Behavioural results revealed qualitatively similar attentional benefits in both recall accuracy and response time, but also showed that cueing benefits were larger following item cues. Concurrent EEG measurements further revealed a similar attenuation of posterior alpha oscillations following both item and feature retro-cues when compared to non-informative, neutral retro-cues. We argue that attention can act flexibly to prioritise the most relevant information – at either the item or the feature-level – to optimise ensuing memory-based task performance, and we discuss the implications of the observed commonalities and differences between item-level and feature-level prioritisation in VWM.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Dario L. Ringach

Abstract The normalization model provides an elegant account of contextual modulation in individual neurons of primary visual cortex. Understanding the implications of normalization at the population level is hindered by the heterogeneity of cortical neurons, which differ in the composition of their normalization pools and semi-saturation constants. Here we introduce a geometric approach to investigate contextual modulation in neural populations and study how the representation of stimulus orientation is transformed by the presence of a mask. We find that population responses can be embedded in a low-dimensional space and that an affine transform can account for the effects of masking. The geometric analysis further reveals a link between changes in discriminability and bias induced by the mask. We propose the geometric approach can yield new insights into the image processing computations taking place in early visual cortex at the population level while coping with the heterogeneity of single cell behavior.


Sign in / Sign up

Export Citation Format

Share Document