scholarly journals Identification and removal of sequencing artifacts produced by mispriming during reverse transcription in multiple RNA-seq technologies

2018 ◽  
Author(s):  
Haridha Shivram ◽  
Vishwanath R. Iyer

AbstractThe quality of RNA sequencing data relies on specific priming by the primer used for reverse transcription (RT-primer). Non-specific annealing of the RT-primer to the RNA template can generate reads with incorrect cDNA ends and can cause misinterpretation of data (RT mispriming). This kind of artifact in RNA-seq based technologies is underappreciated and currently no adequate tools exist to computationally remove them from published datasets. We show that mispriming can occur with as little as 2 bases of complementarity at the 3’ end of the primer followed by intermittent regions of complementarity. We also provide a computational pipeline that identifies cDNA reads produced from RT mispriming, allowing users to filter them out from any aligned dataset. Using this analysis pipeline, we identify thousands of mispriming events in a dozen published datasets from diverse technologies including short RNA-seq, total/mRNA-seq, HITS-CLIP and GRO-seq. We further show how RT-mispriming can lead to misinterpretation of data. In addition to providing a solution to computationally remove RT-misprimed reads, we also propose an experimental solution to avoid RT-mispriming by performing RNA-seq using thermostable group II intron derived reverse transcriptase (TGIRT-seq).


2020 ◽  
Author(s):  
Maxim Ivanov ◽  
Albin Sandelin ◽  
Sebastian Marquardt

Abstract Background: The quality of gene annotation determines the interpretation of results obtained in transcriptomic studies. The growing number of genome sequence information calls for experimental and computational pipelines for de novo transcriptome annotation. Ideally, gene and transcript models should be called from a limited set of key experimental data. Results: We developed TranscriptomeReconstructoR, an R package which implements a pipeline for automated transcriptome annotation. It relies on integrating features from independent and complementary datasets: i) full-length RNA-seq for detection of splicing patterns and ii) high-throughput 5' and 3' tag sequencing data for accurate definition of gene borders. The pipeline can also take a nascent RNA-seq dataset to supplement the called gene model with transient transcripts.We reconstructed de novo the transcriptional landscape of wild type Arabidopsis thaliana seedlings as a proof-of-principle. A comparison to the existing transcriptome annotations revealed that our gene model is more accurate and comprehensive than the two most commonly used community gene models, TAIR10 and Araport11. In particular, we identify thousands of transient transcripts missing from the existing annotations. Our new annotation promises to improve the quality of A.thaliana genome research.Conclusions: Our proof-of-concept data suggest a cost-efficient strategy for rapid and accurate annotation of complex eukaryotic transcriptomes. We combine the choice of library preparation methods and sequencing platforms with the dedicated computational pipeline implemented in the TranscriptomeReconstructoR package. The pipeline only requires prior knowledge on the reference genomic DNA sequence, but not the transcriptome. The package seamlessly integrates with Bioconductor packages for downstream analysis.



2019 ◽  
Author(s):  
Christina Huan Shi ◽  
Kevin Y. Yip

AbstractK-mer counting has many applications in sequencing data processing and analysis. However, sequencing errors can produce many false k-mers that substantially increase the memory requirement during counting. We propose a fast k-mer counting method, CQF-deNoise, which has a novel component for dynamically identifying and removing false k-mers while preserving counting accuracy. Compared with four state-of-the-art k-mer counting methods, CQF-deNoise consumed 49-76% less memory than the second best method, but still ran competitively fast. The k-mer counts from CQF-deNoise produced cell clusters from single-cell RNA-seq data highly consistent with CellRanger but required only 5% of the running time at the same memory consumption, suggesting that CQF-deNoise can be used for a preview of cell clusters for an early detection of potential data problems, before running a much more time-consuming full analysis pipeline.



Author(s):  
Huan Zhong ◽  
Zongwei Cai ◽  
Zhu Yang ◽  
Yiji Xia

AbstractNAD tagSeq has recently been developed for the identification and characterization of NAD+-capped RNAs (NAD-RNAs). This method adopts a strategy of chemo-enzymatic reactions to label the NAD-RNAs with a synthetic RNA tag before subjecting to the Oxford Nanopore direct RNA sequencing. A computational tool designed for analyzing the sequencing data of tagged RNA will facilitate the broader application of this method. Hence, we introduce TagSeqTools as a flexible, general pipeline for the identification and quantification of tagged RNAs (i.e., NAD+-capped RNAs) using long-read transcriptome sequencing data generated by NAD tagSeq method. TagSeqTools comprises two major modules, TagSeek for differentiating tagged and untagged reads, and TagSeqQuant for the quantitative and further characterization analysis of genes and isoforms. Besides, the pipeline also integrates some advanced functions to identify antisense or splicing, and supports the data reformation for visualization. Therefore, TagSeqTools provides a convenient and comprehensive workflow for researchers to analyze the data produced by the NAD tagSeq method or other tagging-based experiments using Oxford nanopore direct RNA sequencing. The pipeline is available at https://github.com/dorothyzh/TagSeqTools, under Apache License 2.0.



2021 ◽  
Author(s):  
Combiz Khozoie ◽  
Nurun Fancy ◽  
Mahdi Moradi Marjaneh ◽  
Alan E. Murphy ◽  
Paul M. Matthews ◽  
...  

Advances in single-cell RNA-sequencing technology over the last decade have enabled exponential increases in throughput: datasets with over a million cells are becoming commonplace. The burgeoning scale of data generation, combined with the proliferation of alternative analysis methods, led us to develop the scFlow toolkit and the nf-core/scflow pipeline for reproducible, efficient, and scalable analyses of single-cell and single-nuclei RNA-sequencing data. The scFlow toolkit provides a higher level of abstraction on top of popular single-cell packages within an R ecosystem, while the nf-core/scflow Nextflow pipeline is built within the nf-core framework to enable compute infrastructure-independent deployment across all institutions and research facilities. Here we present our flexible pipeline, which leverages the advantages of containerization and the potential of Cloud computing for easy orchestration and scaling of the analysis of large case/control datasets by even non-expert users. We demonstrate the functionality of the analysis pipeline from sparse-matrix quality control through to insight discovery with examples of analysis of four recently published public datasets and describe the extensibility of scFlow as a modular, open-source tool for single-cell and single nuclei bioinformatic analyses.





Author(s):  
Paul L. Auer ◽  
Rebecca W Doerge

RNA sequencing technology is providing data of unprecedented throughput, resolution, and accuracy. Although there are many different computational tools for processing these data, there are a limited number of statistical methods for analyzing them, and even fewer that acknowledge the unique nature of individual gene transcription. We introduce a simple and powerful statistical approach, based on a two-stage Poisson model, for modeling RNA sequencing data and testing for biologically important changes in gene expression. The advantages of this approach are demonstrated through simulations and real data applications.



2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yuxiang Tan ◽  
Yann Tambouret ◽  
Stefano Monti

The performance evaluation of fusion detection algorithms from high-throughput sequencing data crucially relies on the availability of data with known positive and negative cases of gene rearrangements. The use of simulated data circumvents some shortcomings of real data by generation of an unlimited number of true and false positive events, and the consequent robust estimation of accuracy measures, such as precision and recall. Although a few simulated fusion datasets from RNA Sequencing (RNA-Seq) are available, they are of limited sample size. This makes it difficult to systematically evaluate the performance of RNA-Seq based fusion-detection algorithms. Here, we present SimFuse to address this problem. SimFuse utilizes real sequencing data as the fusions’ background to closely approximate the distribution of reads from a real sequencing library and uses a reference genome as the template from which to simulate fusions’ supporting reads. To assess the supporting read-specific performance, SimFuse generates multiple datasets with various numbers of fusion supporting reads. Compared to an extant simulated dataset, SimFuse gives users control over the supporting read features and the sample size of the simulated library, based on which the performance metrics needed for the validation and comparison of alternative fusion-detection algorithms can be rigorously estimated.



2018 ◽  
Author(s):  
Xianwen Ren ◽  
Liangtao Zheng ◽  
Zemin Zhang

ABSTRACTClustering is a prevalent analytical means to analyze single cell RNA sequencing data but the rapidly expanding data volume can make this process computational challenging. New methods for both accurate and efficient clustering are of pressing needs. Here we proposed a new clustering framework based on random projection and feature construction for large scale single-cell RNA sequencing data, which greatly improves clustering accuracy, robustness and computational efficacy for various state-of-the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood cells, our method reached 20% improvements for clustering accuracy and 50-fold acceleration but only consumed 66% memory usage compared to the widely-used software package SC3. Compared to k-means, the accuracy improvement can reach 3-fold depending on the concrete dataset. An R implementation of the framework is available from https://github.com/Japrin/sscClust.



2020 ◽  
Author(s):  
Eliah G. Overbey ◽  
Amanda M. Saravia-Butler ◽  
Zhe Zhang ◽  
Komal S. Rathi ◽  
Homer Fogle ◽  
...  

SummaryWith the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility and reusability of pipeline data, to provide a template for data processing of future spaceflight-relevant datasets, and to encourage cross-analysis of data from other databases with the data available in GeneLab.



2017 ◽  
Author(s):  
Luke Zappia ◽  
Belinda Phipson ◽  
Alicia Oshlack

AbstractAs single-cell RNA sequencing technologies have rapidly developed, so have analysis methods. Many methods have been tested, developed and validated using simulated datasets. Unfortunately, current simulations are often poorly documented, their similarity to real data is not demonstrated, or reproducible code is not available.Here we present the Splatter Bioconductor package for simple, reproducible and well-documented simulation of single-cell RNA-seq data. Splatter provides an interface to multiple simulation methods including Splat, our own simulation, based on a gamma-Poisson distribution. Splat can simulate single populations of cells, populations with multiple cell types or differentiation paths.



Sign in / Sign up

Export Citation Format

Share Document