scholarly journals A quantitative framework for motion visibility in human cortex

2018 ◽  
Author(s):  
Daniel Birman ◽  
Justin L Gardner

AbstractDespite the central use of motion visibility to reveal the neural basis of perception, perceptual decision making, and sensory inference there exists no comprehensive quantitative framework establishing how motion visibility parameters modulate human cortical response. Random-dot motion stimuli can be made less visible by reducing image contrast or motion coherence, or by shortening the stimulus duration. Because each of these manipulations modulates the strength of sensory neural responses they have all been extensively used to reveal cognitive and other non-sensory phenomenon such as the influence of priors, attention, and choice-history biases. However, each of these manipulations is thought to influence response in different ways across different cortical regions and a comprehensive study is required to interpret this literature. Here, human participants observed random-dot stimuli varying across a large range of contrast, coherence, and stimulus durations as we measured blood-oxygen-level dependent responses. We developed a framework for modeling these responses which quantifies their functional form and sensitivity across areas. Our framework demonstrates the sensitivity of all visual areas to each parameter, with early visual areas V1-V4 showing more parametric sensitivity to changes in contrast and V3A and MT to coherence. Our results suggest that while motion contrast, coherence, and duration share cortical representation, they are encoded with distinct functional forms and sensitivity. Thus, our quantitative framework serves as a reference for interpretation of the vast perceptual literature manipulating these parameters and shows that different manipulations of visibility will have different effects across human visual cortex and need to be interpreted accordingly.

2018 ◽  
Vol 120 (4) ◽  
pp. 1824-1839 ◽  
Author(s):  
Daniel Birman ◽  
Justin L. Gardner

Despite the central use of motion visibility to reveal the neural basis of perception, perceptual decision making, and sensory inference there exists no comprehensive quantitative framework establishing how motion visibility parameters modulate human cortical response. Random-dot motion stimuli can be made less visible by reducing image contrast or motion coherence, or by shortening the stimulus duration. Because each of these manipulations modulates the strength of sensory neural responses they have all been extensively used to reveal cognitive and other nonsensory phenomena such as the influence of priors, attention, and choice-history biases. However, each of these manipulations is thought to influence response in different ways across different cortical regions and a comprehensive study is required to interpret this literature. Here, human participants observed random-dot stimuli varying across a large range of contrast, coherence, and stimulus durations as we measured blood-oxygen-level dependent responses. We developed a framework for modeling these responses that quantifies their functional form and sensitivity across areas. Our framework demonstrates the sensitivity of all visual areas to each parameter, with early visual areas V1–V4 showing more parametric sensitivity to changes in contrast and V3A and the human middle temporal area to coherence. Our results suggest that while motion contrast, coherence, and duration share cortical representation, they are encoded with distinct functional forms and sensitivity. Thus, our quantitative framework serves as a reference for interpretation of the vast perceptual literature manipulating these parameters and shows that different manipulations of visibility will have different effects across human visual cortex and need to be interpreted accordingly. NEW & NOTEWORTHY Manipulations of motion visibility have served as a key tool for understanding the neural basis for visual perception. Here we measured human cortical response to changes in visibility across a comprehensive range of motion visibility parameters and modeled these with a quantitative framework. Our quantitative framework can be used as a reference for linking human cortical response to perception and underscores that different manipulations of motion visibility can have greatly different effects on cortical representation.


2010 ◽  
Vol 104 (4) ◽  
pp. 2075-2081 ◽  
Author(s):  
Lars Strother ◽  
Adrian Aldcroft ◽  
Cheryl Lavell ◽  
Tutis Vilis

Functional MRI (fMRI) studies of the human object recognition system commonly identify object-selective cortical regions by comparing blood oxygen level–dependent (BOLD) responses to objects versus those to scrambled objects. Object selectivity distinguishes human lateral occipital cortex (LO) from earlier visual areas. Recent studies suggest that, in addition to being object selective, LO is retinotopically organized; LO represents both object and location information. Although LO responses to objects have been shown to depend on location, it is not known whether responses to scrambled objects vary similarly. This is important because it would suggest that the degree of object selectivity in LO does not vary with retinal stimulus position. We used a conventional functional localizer to identify human visual area LO by comparing BOLD responses to objects versus scrambled objects presented to either the upper (UVF) or lower (LVF) visual field. In agreement with recent findings, we found evidence of position-dependent responses to objects. However, we observed the same degree of position dependence for scrambled objects and thus object selectivity did not differ for UVF and LVF stimuli. We conclude that, in terms of BOLD response, LO discriminates objects from non-objects equally well in either visual field location, despite stronger responses to objects in the LVF.


2010 ◽  
Vol 104 (3) ◽  
pp. 1746-1757 ◽  
Author(s):  
R. S. Weil ◽  
N. Furl ◽  
C. C. Ruff ◽  
M. Symmonds ◽  
G. Flandin ◽  
...  

Reward can influence visual performance, but the neural basis of this effect remains poorly understood. Here we used functional magnetic resonance imaging to investigate how rewarding feedback affected activity in distinct areas of human visual cortex, separating rewarding feedback events after correct performance from preceding visual events. Participants discriminated oriented gratings in either hemifield, receiving auditory feedback at trial end that signaled financial reward after correct performance. Greater rewards improved performance for all but the most difficult trials. Rewarding feedback increased blood-oxygen-level-dependent (BOLD) signals in striatum and orbitofrontal cortex. It also increased BOLD signals in visual areas beyond retinotopic cortex, but not in primary visual cortex representing the judged stimuli. These modulations were seen at a time point in which no visual stimuli were presented or expected, demonstrating a novel type of activity change in visual cortex that cannot reflect modulation of response to incoming or anticipated visual stimuli. Rewarded trials led on the next trial to improved performance and enhanced visual activity contralateral to the judged stimulus, for retinotopic representations of the judged visual stimuli in V1. Our findings distinguish general effects in nonretinotopic visual cortex when receiving rewarding feedback after correct performance from consequences of reward for spatially specific responses in V1.


2010 ◽  
Vol 103 (6) ◽  
pp. 3465-3471 ◽  
Author(s):  
Damien J. Mannion ◽  
J. Scott McDonald ◽  
Colin W. G. Clifford

Representing the orientation of features in the visual image is a fundamental operation of the early cortical visual system. The nature of such representations can be informed by considering anisotropic distributions of response across the range of orientations. Here we used functional MRI to study modulations in the cortical activity elicited by observation of a sinusoidal grating that varied in orientation. We report a significant anisotropy in the measured blood-oxygen level-dependent activity within visual areas V1, V2, V3, and V3A/B in which horizontal orientations evoked a reduced response. These visual areas and hV4 showed a further anisotropy in which increased responses were observed for orientations that were radial to the point of fixation. We speculate that the anisotropies in cortical activity may be related to anisotropies in the prevalence and behavioral relevance of orientations in typical natural environments.


2004 ◽  
Vol 16 (4) ◽  
pp. 637-653 ◽  
Author(s):  
John R. Anderson ◽  
Yulin Qin ◽  
V. Andrew Stenger ◽  
Cameron S. Carter

This research tests a model of the computational role of three cortical regions in tasks like algebra equation solving. The model assumes that there is a left parietal region-of-interest (ROI) where the problem expression is represented and transformed, a left prefrontal ROI where information for solving the task is retrieved, and a motor ROI where hand movements to produce the answer are programmed. A functional magnetic resonance imaging (fMRI) study of an abstract symbolmanipulation task was performed to articulate the roles of these three regions. Participants learned to associate words with instructions for transforming strings of letters. The study manipulated the need to retrieve these instructions, the need to transform the strings, and whether there was a delay between calculation of the answer and the output of the answer. As predicted, the left parietal ROI mainly reflected the need for a transformation and the left prefrontal ROI the need for retrieval. Homologous right ROIs showed similar but weaker responses. Neither the prefrontal nor the parietal ROIs responded to delay, but the motor ROI did respond to delay, implying motor rehearsal over the delay. Except for the motor ROI, these patterns of activity did not vary with response hand. In an ACT-R model, it was shown that the activity of an imaginal buffer predicted the blood oxygen level-dependent (BOLD) response of the parietal ROI, the activity of a retrieval buffer predicted the response of the prefrontal ROI, and the activity of a manual buffer predicted the response of the motor ROI.


Author(s):  
Kenneth R. Holmes ◽  
David Tang-Wai ◽  
Kevin Sam ◽  
Larissa McKetton ◽  
Julien Poublanc ◽  
...  

ABSTRACT:Background:Recent investigations now suggest that cerebrovascular reactivity (CVR) is impaired in Alzheimer’s disease (AD) and may underpin part of the disease’s neurovascular component. However, our understanding of the relationship between the magnitude of CVR, the speed of cerebrovascular response, and the progression of AD is still limited. This is especially true in patients with mild cognitive impairment (MCI), which is recognized as an intermediate stage between normal aging and dementia. The purpose of this study was to investigate AD and MCI patients by mapping repeatable and accurate measures of cerebrovascular function, namely the magnitude and speed of cerebrovascular response (τ) to a vasoactive stimulus in key predilection sites for vascular dysfunction in AD.Methods:Thirty-three subjects (age range: 52–83 years, 20 males) were prospectively recruited. CVR and τ were assessed using blood oxygen level-dependent MRI during a standardized carbon dioxide stimulus. Temporal and parietal cortical regions of interest (ROIs) were generated from anatomical images using the FreeSurfer image analysis suite.Results:Of 33 subjects recruited, 3 individuals were excluded, leaving 30 subjects for analysis, consisting of 6 individuals with early AD, 11 individuals with MCI, and 13 older healthy controls (HCs). τ was found to be significantly higher in the AD group compared to the HC group in both the temporal (p = 0.03) and parietal cortex (p = 0.01) following a one-way ANCOVA correcting for age and microangiopathy scoring and a Bonferroni post-hoc correction.Conclusion:The study findings suggest that AD is associated with a slowing of the cerebrovascular response in the temporal and parietal cortices.


2011 ◽  
Vol 105 (3) ◽  
pp. 1258-1265 ◽  
Author(s):  
Vivian M. Ciaramitaro ◽  
Jude F. Mitchell ◽  
Gene R. Stoner ◽  
John H. Reynolds ◽  
Geoffrey M. Boynton

Faced with an overwhelming amount of sensory information, we are able to prioritize the processing of select spatial locations and visual features. The neuronal mechanisms underlying such spatial and feature-based selection have been studied in considerable detail. More recent work shows that attention can also be allocated to objects, even spatially superimposed objects composed of dynamically changing features that must be integrated to create a coherent object representation. Much less is known about the mechanisms underlying such object-based selection. Our goal was to investigate behavioral and neuronal responses when attention was directed to one of two objects, specifically one of two superimposed transparent surfaces, in a task designed to preclude space-based and feature-based selection. We used functional magnetic resonance imaging (fMRI) to measure changes in blood oxygen level-dependent (BOLD) signals when attention was deployed to one or the other surface. We found that visual areas V1, V2, V3, V3A, and MT+ showed enhanced BOLD responses to translations of an attended relative to an unattended surface. These results reveal that visual areas as early as V1 can be modulated by attending to objects, even objects defined by dynamically changing elements. This provides definitive evidence in humans that early visual areas are involved in a seemingly high-order process. Furthermore, our results suggest that these early visual areas may participate in object-specific feature “binding,” a process that seemingly must occur for an object or a surface to be the unit of attentional selection.


2018 ◽  
Author(s):  
Chris Racey ◽  
Anna Franklin ◽  
Chris M. Bird

AbstractDecades of research has established that humans have preferences for some colors (e.g., blue) and a dislike of others (e.g., dark chartreuse), with preference varying systematically with variation in hue (e.g., Hurlbert & Owen, 2015). Here, we used functional MRI to investigate why humans have likes and dislikes for simple patches of color, and to understand the neural basis of preference, aesthetics and value judgements more generally. We looked for correlations of a behavioural measure of color preference with the blood oxygen level-dependent (BOLD) response when participants performed an irrelevant orientation judgement task on colored squares. A whole brain analysis found a significant correlation between BOLD activity and color preference in the posterior midline cortex (PMC), centred on the precuneus but extending into the adjacent posterior cingulate and cuneus. These results demonstrate that brain activity is modulated by color preference, even when such preferences are irrelevant to the ongoing task the participants are engaged. They also suggest that color preferences automatically influence our processing of the visual world. Interestingly, the effect in the PMC overlaps with regions identified in neuroimaging studies of preference and value judgements of other types of stimuli. Therefore, our findings extends this literature to show that the PMC is related to automatic encoding of subjective value even for basic visual features such as color.


2018 ◽  
Author(s):  
Evelyn MR Lake ◽  
Xinxin Ge ◽  
Xilin Shen ◽  
Peter Herman ◽  
Fahmeed Hyder ◽  
...  

ABSTRACTTo achieve a more comprehensive understanding of brain function requires simultaneous measurement of activity across a range of spatiotemporal scales. However, the appropriate tools to perform such studies are largely unavailable. Here, we present a novel approach for concurrent wide-field optical and functional magnetic resonance imaging (fMRI). By merging these two modalities, we are for the first time able to simultaneously acquire whole-brain blood-oxygen-level-dependent and whole-cortex calcium-sensitive fluorescent measures of brain activity. We describe the developments that allow us to combine these modalities without compromising the fidelity of either technique. In a transgenic murine model, we examine correspondences between activity measured using these modalities and identify unique and complementary features of each. Our approach links cell-type specific optical measurements of neural activity to the most widely used method for assessing human brain function. These data and approach directly establish the neural basis for the macroscopic connectivity patterns observed with fMRI.


2019 ◽  
Vol 30 (4) ◽  
pp. 2267-2280
Author(s):  
Manje A B Brinkhuis ◽  
Árni Kristjánsson ◽  
Ben M Harvey ◽  
Jan W Brascamp

Abstract Priming of attention shifts involves the reduction in search RTs that occurs when target location or target features repeat. We used functional magnetic resonance imaging to investigate the neural basis of such attentional priming, specifically focusing on its temporal characteristics over trial sequences. We first replicated earlier findings by showing that repetition of target color and of target location from the immediately preceding trial both result in reduced blood oxygen level-dependent (BOLD) signals in a cortical network that encompasses occipital, parietal, and frontal cortices: lag-1 repetition suppression. While such lag-1 suppression can have a number of explanations, behaviorally, the influence of attentional priming extends further, with the influence of past search trials gradually decaying across multiple subsequent trials. Our results reveal that the same regions within the frontoparietal network that show lag-1 suppression, also show longer term BOLD reductions that diminish over the course of several trial presentations, keeping pace with the decaying behavioral influence of past target properties across trials. This distinct parallel between the across-trial patterns of cortical BOLD and search RT reductions, provides strong evidence that these cortical areas play a key role in attentional priming.


Sign in / Sign up

Export Citation Format

Share Document