scholarly journals Processing of eukaryotic Okazaki fragments by redundant nucleases can be uncoupled from ongoing DNA replicationin vivo

2018 ◽  
Author(s):  
Malik Kahli ◽  
Joseph S. Osmundson ◽  
Rani Yeung ◽  
Duncan J. Smith

ABSTRACTPrior to ligation, each Okazaki fragment synthesized on the lagging strand in eukaryotes must be nucleolytically processed. Nuclease cleavage takes place in the context of 5’ flap structures generated via strand-displacement synthesis by DNA polymerase delta. At least three DNA nucleases: Rad27 (Fen1), Dna2, and Exo1, have been implicated in processing Okazaki fragment flaps. However, neither the contributions of individual nucleases to lagging-strand synthesis nor the structure of the DNA intermediates formed in their absence have been clearly definedin vivo.By conditionally depleting lagging-strand nucleases and directly analyzing Okazaki fragments synthesizedin vivoinS. cerevisiae, we conduct a systematic evaluation of the impact of Rad27, Dna2 and Exo1 on lagging-strand synthesis. We find that Rad27 processes the majority of lagging-strand flaps, with a significant additional contribution from Exo1 but not from Dna2. When nuclease cleavage is impaired, we observe a reduction in strand-displacement synthesis as opposed to the widespread generation of long Okazaki fragment 5’ flaps, as predicted by some models. Further, using cell cycle-restricted constructs, we demonstrate that both the nucleolytic processing and the ligation of Okazaki fragments can be uncoupled from DNA replication and delayed until after synthesis of the majority of the genome is complete.

Author(s):  
Natasha C Koussa ◽  
Duncan J Smith

Abstract During lagging-strand synthesis, strand-displacement synthesis by DNA polymerase delta (Pol ∂), coupled to nucleolytic cleavage of DNA flap structures, produces a nick-translation reaction that replaces the DNA at the 5’ end of the preceding Okazaki fragment. Previous work following depletion of DNA ligase I in Saccharomyces cerevisae suggests that DNA-bound proteins, principally nucleosomes and the transcription factors Abf1/Rap1/Reb1, pose a barrier to Pol ∂ synthesis and thereby limit the extent of nick translation in vivo. However, the extended ligase depletion required for these experiments could lead to ongoing, non-physiological nick translation. Here, we investigate nick translation by analyzing Okazaki fragments purified after transient nuclear depletion of DNA ligase I in synchronized or asynchronous S. cerevisiae cultures. We observe that, even with a short ligase depletion, Okazaki fragment termini are enriched around nucleosomes and Abf1/Reb1/Rap1 binding sites. However protracted ligase depletion leads to a global change in the location of these termini, moving them towards nucleosome dyads from a more upstream location and further enriching termini at Abf1/Reb1/Rap1 binding sites. Additionally, we observe an under-representation of DNA derived from DNA polymerase alpha – the polymerase that initiates Okazaki fragment synthesis – around the sites of Okazaki termini obtained from very brief ligase depletion. Our data suggest that, while nucleosomes and transcription factors do limit strand-displacement synthesis by Pol ∂ in vivo, post-replicative nick translation can occur at unligated Okazaki fragment termini such that previous analyses represent an overestimate of the extent of nick translation occurring during normal lagging-strand synthesis.


2019 ◽  
Author(s):  
Natasha C Koussa ◽  
Duncan J. Smith

ABSTRACTDNA polymerase delta (Pol δ) plays several essential roles in eukaryotic DNA replication and repair. At the replication fork, Pol δ is responsible for the synthesis and processing of the lagging-strand. At replication origins, Pol δ has been proposed to initiate leading-strand synthesis by extending the first Okazaki fragment. Destabilizing mutations in human Pol δ subunits cause replication stress and syndromic immunodeficiency. Analogously, reduced levels of Pol δ in Saccharomyces cerevisiae lead to pervasive genome instability. Here, we analyze how the depletion of Pol δ impacts replication origin firing and lagging-strand synthesis during replication elongation in vivo in S. cerevisiae. By analyzing nascent lagging-strand products, we observe a genome-wide change in both the establishment and progression of replication. S-phase progression is slowed in Pol δ depletion, with both globally reduced origin firing and slower replication progression. We find that no polymerase other than Pol δ is capable of synthesizing a substantial amount of lagging-strand DNA, even when Pol δ is severely limiting. We also characterize the impact of impaired lagging-strand synthesis on genome integrity and find increased ssDNA and DNA damage when Pol δ is limiting; these defects lead to a strict dependence on checkpoint signaling and resection-mediated repair pathways for cellular viability.SIGNIFICANCE STATEMENTDNA replication in eukaryotes is carried out by the replisome – a multi-subunit complex comprising the enzymatic activities required to generate two intact daughter DNA strands. DNA polymerase delta (Pol δ) is a multi-functional replisome enzyme responsible for synthesis and processing of the lagging-strand. Mutations in Pol δ cause a variety of human diseases: for example, destabilizing mutations lead to immunodeficiency. We titrate the concentration of Pol δ in budding yeast – a simple model eukaryote with conserved DNA replication machinery. We characterize several replication defects associated with Pol δ scarcity. The defects we observe provide insight into how destabilizing Pol δ mutations lead to genome instability.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009322
Author(s):  
Natasha C. Koussa ◽  
Duncan J. Smith

DNA polymerase delta (Pol δ) plays several essential roles in eukaryotic DNA replication and repair. At the replication fork, Pol δ is responsible for the synthesis and processing of the lagging-strand. At replication origins, Pol δ has been proposed to initiate leading-strand synthesis by extending the first Okazaki fragment. Destabilizing mutations in human Pol δ subunits cause replication stress and syndromic immunodeficiency. Analogously, reduced levels of Pol δ in Saccharomyces cerevisiae lead to pervasive genome instability. Here, we analyze how the depletion of Pol δ impacts replication origin firing and lagging-strand synthesis during replication elongation in vivo in S. cerevisiae. By analyzing nascent lagging-strand products, we observe a genome-wide change in both the establishment and progression of replication. S-phase progression is slowed in Pol δ depletion, with both globally reduced origin firing and slower replication progression. We find that no polymerase other than Pol δ is capable of synthesizing a substantial amount of lagging-strand DNA, even when Pol δ is severely limiting. We also characterize the impact of impaired lagging-strand synthesis on genome integrity and find increased ssDNA and DNA damage when Pol δ is limiting; these defects lead to a strict dependence on checkpoint signaling and resection-mediated repair pathways for cellular viability.


2019 ◽  
Vol 201 (7) ◽  
Author(s):  
Justin R. Randall ◽  
Taylor M. Nye ◽  
Katherine J. Wozniak ◽  
Lyle A. Simmons

ABSTRACTRNA-DNA hybrids are common in chromosomal DNA. Persistent RNA-DNA hybrids result in replication fork stress, DNA breaks, and neurological disorders in humans. During replication, Okazaki fragment synthesis relies on frequent RNA primer placement, providing one of the most prominent forms of covalent RNA-DNA strandsin vivo. The mechanism of Okazaki fragment maturation, which involves RNA removal and subsequent DNA replacement, in bacteria lacking RNase HI remains unclear. In this work, we reconstituted repair of a linear model Okazaki fragmentin vitrousing purified recombinant enzymes fromBacillus subtilis. We showed that RNase HII and HIII are capable of incision on Okazaki fragmentsin vitroand that both enzymes show mild stimulation by single-stranded DNA binding protein (SSB). We also showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturationin vitro. Furthermore, we found that YpcP is a 5′ to 3′ nuclease that can act on a wide variety of RNA- and DNA-containing substrates and exhibits preference for degrading RNA in model Okazaki fragments. Together, our data showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation, whereas YpcP also contributes to the removal of RNA from an Okazaki fragmentin vitro.IMPORTANCEAll cells are required to resolve the different types of RNA-DNA hybrids that formin vivo. When RNA-DNA hybrids persist, cells experience an increase in mutation rate and problems with DNA replication. Okazaki fragment synthesis on the lagging strand requires an RNA primer to begin synthesis of each fragment. The mechanism of RNA removal from Okazaki fragments remains unknown in bacteria that lack RNase HI. We examined Okazaki fragment processingin vitroand found that RNase HIII in conjunction with DNA polymerase I represent the most efficient repair pathway. We also assessed the contribution of YpcP and found that YpcP is a 5′ to 3′ exonuclease that prefers RNA substrates with activity on Okazaki and flap substratesin vitro.


2017 ◽  
Vol 199 (13) ◽  
Author(s):  
Brett W. Burkhart ◽  
Lubomira Cubonova ◽  
Margaret R. Heider ◽  
Zvi Kelman ◽  
John N. Reeve ◽  
...  

ABSTRACT Many aspects of and factors required for DNA replication are conserved across all three domains of life, but there are some significant differences surrounding lagging-strand synthesis. In Archaea, a 5′-to-3′ exonuclease, related to both bacterial RecJ and eukaryotic Cdc45, that associates with the replisome specifically through interactions with GINS was identified and designated GAN (for GINS-associated nuclease). Despite the presence of a well-characterized flap endonuclease (Fen1), it was hypothesized that GAN might participate in primer removal during Okazaki fragment maturation, and as a Cdc45 homologue, GAN might also be a structural component of an archaeal CMG (Cdc45, MCM, and GINS) replication complex. We demonstrate here that, individually, either Fen1 or GAN can be deleted, with no discernible effects on viability and growth. However, deletion of both Fen1 and GAN was not possible, consistent with both enzymes catalyzing the same step in primer removal from Okazaki fragments in vivo. RNase HII has also been proposed to participate in primer processing during Okazaki fragment maturation. Strains with both Fen1 and RNase HII deleted grew well. GAN activity is therefore sufficient for viability in the absence of both RNase HII and Fen1, but it was not possible to construct a strain with both RNase HII and GAN deleted. Fen1 alone is therefore insufficient for viability in the absence of both RNase HII and GAN. The ability to delete GAN demonstrates that GAN is not required for the activation or stability of the archaeal MCM replicative helicase. IMPORTANCE The mechanisms used to remove primer sequences from Okazaki fragments during lagging-strand DNA replication differ in the biological domains. Bacteria use the exonuclease activity of DNA polymerase I, whereas eukaryotes and archaea encode a flap endonuclease (Fen1) that cleaves displaced primer sequences. RNase HII and the GINS-associated exonuclease GAN have also been hypothesized to assist in primer removal in Archaea. Here we demonstrate that in Thermococcus kodakarensis, either Fen1 or GAN activity is sufficient for viability. Furthermore, GAN can support growth in the absence of both Fen1 and RNase HII, but Fen1 and RNase HII are required for viability in the absence of GAN.


1999 ◽  
Vol 19 (6) ◽  
pp. 4143-4152 ◽  
Author(s):  
Julie Parenteau ◽  
Raymund J. Wellinger

ABSTRACT The Saccharomyces cerevisiae RAD27 gene encodes the yeast homologue of the mammalian FEN-1 nuclease, a protein that is thought to be involved in the processing of Okazaki fragments during DNA lagging-strand synthesis. One of the predicted DNA lesions occurring in rad27 strains is the presence of single-stranded DNA of the template strand for lagging-strand synthesis. We examined this prediction by analyzing the terminal DNA structures generated during telomere replication in rad27strains. The lengths of the telomeric repeat tracts were found to be destabilized in rad27 strains, indicating that naturally occurring direct repeats are subject to tract expansions and contractions in such strains. Furthermore, abnormally high levels of single-stranded DNA of the templating strand for lagging-strand synthesis were observed in rad27 cells. Overexpression of Dna2p in wild-type cells also yielded single-stranded DNA regions on telomeric DNA and caused a cell growth arrest phenotype virtually identical to that seen for rad27 cells grown at the restrictive temperature. Furthermore, overexpression of the yeast exonuclease Exo1p alleviated the growth arrest induced by both conditions, overexpression of Dna2p and incubation of rad27cells at 37°C. However, the telomere heterogeneity and the appearance of single-stranded DNA are not prevented by the overexpression of Exo1p in these strains, suggesting that this nuclease is not simply redundant with Rad27p. Our data thus provide in vivo evidence for the types of DNA lesions predicted to occur when lagging-strand synthesis is deficient and suggest that Dna2p and Rad27p collaborate in the processing of Okazaki fragments.


1989 ◽  
Vol 9 (1) ◽  
pp. 57-66
Author(s):  
M Zuber ◽  
E M Tan ◽  
M Ryoji

Proliferating cell nuclear antigen (PCNA) (also called cyclin) is known to stimulate the activity of DNA polymerase delta but not the other DNA polymerases in vitro. We injected a human autoimmune antibody against PCNA into unfertilized eggs of Xenopus laevis and examined the effects of this antibody on the replication of injected plasmid DNA as well as egg chromosomes. The anti-PCNA antibody inhibited plasmid replication by up to 67%, demonstrating that PCNA is involved in plasmid replication in living cells. This result further implies that DNA polymerase delta is necessary for plasmid replication in vivo. Anti-PCNA antibody alone did not block plasmid replication completely, but the residual replication was abolished by coinjection of a monoclonal antibody against DNA polymerase alpha. Anti-DNA polymerase alpha alone inhibited plasmid replication by 63%. Thus, DNA polymerase alpha is also required for plasmid replication in this system. In similar studies on the replication of egg chromosomes, the inhibition by anti-PCNA antibody was only 30%, while anti-DNA polymerase alpha antibody blocked 73% of replication. We concluded that the replication machineries of chromosomes and plasmid differ in their relative content of DNA polymerase delta. In addition, we obtained evidence through the use of phenylbutyl deoxyguanosine, an inhibitor of DNA polymerase alpha, that the structure of DNA polymerase alpha holoenzyme for chromosome replication is significantly different from that for plasmid replication.


2019 ◽  
Vol 116 (4) ◽  
pp. 1251-1260 ◽  
Author(s):  
Glen E. Cronan ◽  
Elena A. Kouzminova ◽  
Andrei Kuzminov

In vitro, purified replisomes drive model replication forks to synthesize continuous leading strands, even without ligase, supporting the semidiscontinuous model of DNA replication. However, nascent replication intermediates isolated from ligase-deficientEscherichia colicomprise only short (on average 1.2-kb) Okazaki fragments. It was long suspected that cells replicate their chromosomal DNA by the semidiscontinuous mode observed in vitro but that, in vivo, the nascent leading strand was artifactually fragmented postsynthesis by excision repair. Here, using high-resolution separation of pulse-labeled replication intermediates coupled with strand-specific hybridization, we show that excision-proficientE. coligenerates leading-strand intermediates >10-fold longer than lagging-strand Okazaki fragments. Inactivation of DNA-repair activities, including ribonucleotide excision, further increased nascent leading-strand size to ∼80 kb, while lagging-strand Okazaki fragments remained unaffected. We conclude that in vivo, repriming occurs ∼70× less frequently on the leading versus lagging strands, and that DNA replication inE. coliis effectively semidiscontinuous.


2016 ◽  
Vol 113 (21) ◽  
pp. 5916-5921 ◽  
Author(s):  
Alfredo J. Hernandez ◽  
Seung-Joo Lee ◽  
Charles C. Richardson

DNA replication occurs semidiscontinuously due to the antiparallel DNA strands and polarity of enzymatic DNA synthesis. Although the leading strand is synthesized continuously, the lagging strand is synthesized in small segments designated Okazaki fragments. Lagging-strand synthesis is a complex event requiring repeated cycles of RNA primer synthesis, transfer to the lagging-strand polymerase, and extension effected by cooperation between DNA primase and the lagging-strand polymerase. We examined events controlling Okazaki fragment initiation using the bacteriophage T7 replication system. Primer utilization by T7 DNA polymerase is slower than primer formation. Slow primer release from DNA primase allows the polymerase to engage the complex and is followed by a slow primer handoff step. The T7 single-stranded DNA binding protein increases primer formation and extension efficiency but promotes limited rounds of primer extension. We present a model describing Okazaki fragment initiation, the regulation of fragment length, and their implications for coordinated leading- and lagging-strand DNA synthesis.


2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Baomin Li ◽  
Sita Reddy ◽  
Lucio Comai

ABSTRACT The Werner syndrome protein (WRN) suppresses the loss of telomeres replicated by lagging-strand synthesis by a yet to be defined mechanism. Here, we show that whereas either WRN or the Bloom syndrome helicase (BLM) stimulates DNA polymerase δ progression across telomeric G-rich repeats, only WRN promotes sequential strand displacement synthesis and FEN1 cleavage, a critical step in Okazaki fragment maturation, at these sequences. Helicase activity, as well as the conserved winged-helix (WH) motif and the helicase and RNase D C-terminal (HRDC) domain play important but distinct roles in this process. Remarkably, WRN also influences the formation of FEN1 cleavage products during strand displacement on a nontelomeric substrate, suggesting that WRN recruitment and cooperative interaction with FEN1 during lagging-strand synthesis may serve to regulate sequential strand displacement and flap cleavage at other genomic sites. These findings define a biochemical context for the physiological role of WRN in maintaining genetic stability.


Sign in / Sign up

Export Citation Format

Share Document