scholarly journals Persistent activity in primate auditory cortex evoked by sensory stimulation

2018 ◽  
Author(s):  
James E. Cooke ◽  
Julie J. Lee ◽  
Edward L. Bartlett ◽  
Xiaoqin Wang ◽  
Daniel Bendor

AbstractPersistent activity, the elevated firing of a neuron after the termination of a stimulus, is hypothesized to play a critical role in working memory. This form of activity is therefore typically studied within the context of a behavioural task that includes a working memory component. Here we investigated whether persistent activity is observed in sensory cortex and thalamus in the absence of any explicit behavioural task. We recorded spiking activity from single units in the auditory cortex (fields A1, R and RT) and thalamus of awake, passively-listening marmosets. We observed persistent activity that lasted for hundreds of milliseconds following the termination of the acoustic stimulus, in the absence of a task. Persistent activity was observed following both adapting and sustained responses during the stimulus and showed similar stimulus tuning to these evoked responses. Persistent activity was also observed following suppression in firing during the stimulus. These response types were observed across all cortical fields tested, but were largely absent from thalamus. As well as being of shorter duration, thalamic persistent activity emerged following a longer latency than in cortex, indicating that persistent activity may be generated within auditory cortex during passive listening. Given that these responses were observed in the absence of a explicit behavioural task, persistent activity in sensory cortex may have functional importance beyond storing task-relevant information in working memory.

2020 ◽  
Author(s):  
Sihai Li ◽  
Christos Constantinidis ◽  
Xue-Lian Qi

ABSTRACTThe dorsolateral prefrontal cortex plays a critical role in spatial working memory and its activity predicts behavioral responses in delayed response tasks. Here we addressed whether this predictive ability extends to categorical judgments based on information retained in working memory, and is present in other brain areas. We trained monkeys in a novel, Match-Stay, Nonmatch-Go task, which required them to observe two stimuli presented in sequence with an intervening delay period between them. If the two stimuli were different, the monkeys had to saccade to the location of the second stimulus; if they were the same, they held fixation. Neurophysiological recordings were performed in areas 8a and 46 of the dlPFC and 7a and lateral intraparietal cortex (LIP) of the PPC. We hypothesized that random drifts causing the peak activity of the network to move away from the first stimulus location and towards the location of the second stimulus would result in categorical errors. Indeed, for both areas, when the first stimulus appeared in a neuron’s preferred location, the neuron showed significantly higher firing rates in correct than in error trials. When the first stimulus appeared at a nonpreferred location and the second stimulus at a preferred, activity in error trials was higher than in correct. The results indicate that the activity of both dlPFC and PPC neurons is predictive of categorical judgments of information maintained in working memory, and the magnitude of neuronal firing rate deviations is revealing of the contents of working memory as it determines performance.SIGNIFICANCE STATEMENTThe neural basis of working memory and the areas mediating this function is a topic of controversy. Persistent activity in the prefrontal cortex has traditionally been thought to be the neural correlate of working memory, however recent studies have proposed alternative mechanisms and brain areas. Here we show that persistent activity in both the dorsolateral prefrontal cortex and posterior parietal cortex predicts behavior in a working memory task that requires a categorical judgement. Our results offer support to the idea that a network of neurons in both areas act as an attractor network that maintains information in working memory, which informs behavior.


2020 ◽  
Vol 32 (12) ◽  
pp. 2285-2302
Author(s):  
Gal Nir-Cohen ◽  
Yoav Kessler ◽  
Tobias Egner

Working memory (WM) needs to protect current content from interference and simultaneously be amenable to rapid updating with newly relevant information. An influential model suggests these opposing requirements are met via a BG–thalamus gating mechanism that allows for selective updating of PFC WM representations. A large neuroimaging literature supports the general involvement of PFC, BG, and thalamus, as well as posterior parietal cortex, in WM. However, the specific functional contributions of these regions to key subprocesses of WM updating, namely, gate opening, content substitution, and gate closing, are still unknown, as common WM tasks conflate these processes. We therefore combined fMRI with the reference-back task, specifically designed to tease apart these subprocesses. Participants compared externally presented face stimuli to a reference face held in WM, while alternating between updating and maintaining this reference, resulting in opening versus closing the gate to WM. Gate opening and substitution processes were associated with strong BG, thalamic, and frontoparietal activation, but intriguingly, the same activity profile was observed for sensory cortex supporting task stimulus processing (i.e., the fusiform face area). In contrast, gate closing was not reliably associated with any of these regions. These findings provide new support for the involvement of the BG in gate opening, as suggested by the gating model, but qualify the model's assumptions by demonstrating that gate closing does not seem to depend on the BG and that gate opening also involves task-relevant sensory cortex.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
James E. Cooke ◽  
Julie J. Lee ◽  
Edward L. Bartlett ◽  
Xiaoqin Wang ◽  
Daniel Bendor

2012 ◽  
Vol 24 (9) ◽  
pp. 1932-1940 ◽  
Author(s):  
Heleen A. Slagter ◽  
Rachel Tomer ◽  
Bradley T. Christian ◽  
Andrew S. Fox ◽  
Lorenza S. Colzato ◽  
...  

Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.


2019 ◽  
Author(s):  
Gal Nir-Cohen ◽  
Yoav Kessler ◽  
Tobias Egner

AbstractWorking memory (WM) needs to protect current content from interference and simultaneously be amenable to rapid updating with newly relevant information. An influential model suggests these opposing requirements are met via a basal ganglia (BG) - thalamus gating mechanism that allows for selective updating of prefrontal cortex (PFC) WM representations. A large neuroimaging literature supports the general involvement of the PFC, BG, and thalamus, as well as posterior parietal cortex (PPC), in WM. However, the specific functional contributions of these regions to key sub-processes of WM updating, namely gate-opening, content substitution, and gate closing, are still unknown, as common WM tasks conflate these processes. We therefore combined functional MRI with the reference-back task, specifically designed to tease apart these sub-processes. Participants compared externally presented face stimuli to a reference face held in WM, while alternating between updating and maintaining this reference, resulting in opening vs. closing the gate to WM. Gate opening and substitution processes were associated with strong BG, thalamic and fronto-parietal activation, but – intriguingly - the same activity profile was observed for sensory cortex supporting task stimulus processing (i.e., the fusiform face area). In contrast, gate closing was not reliably associated with any of these regions. These findings provide new support for the involvement of the BG in gate opening as suggested by the gating model, but qualify the model’s assumptions by demonstrating that gate closing does not seem to depend on the BG, and that gate opening also involves task-relevant sensory cortex.


2016 ◽  
Vol 30 (4) ◽  
pp. 141-154 ◽  
Author(s):  
Kira Bailey ◽  
Gregory Mlynarczyk ◽  
Robert West

Abstract. Working memory supports our ability to maintain goal-relevant information that guides cognition in the face of distraction or competing tasks. The N-back task has been widely used in cognitive neuroscience to examine the functional neuroanatomy of working memory. Fewer studies have capitalized on the temporal resolution of event-related brain potentials (ERPs) to examine the time course of neural activity in the N-back task. The primary goal of the current study was to characterize slow wave activity observed in the response-to-stimulus interval in the N-back task that may be related to maintenance of information between trials in the task. In three experiments, we examined the effects of N-back load, interference, and response accuracy on the amplitude of the P3b following stimulus onset and slow wave activity elicited in the response-to-stimulus interval. Consistent with previous research, the amplitude of the P3b decreased as N-back load increased. Slow wave activity over the frontal and posterior regions of the scalp was sensitive to N-back load and was insensitive to interference or response accuracy. Together these findings lead to the suggestion that slow wave activity observed in the response-to-stimulus interval is related to the maintenance of information between trials in the 1-back task.


2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Russell J. Boag ◽  
Niek Stevenson ◽  
Roel van Dooren ◽  
Anne C. Trutti ◽  
Zsuzsika Sjoerds ◽  
...  

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM’s limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.


Author(s):  
Anne Schienle ◽  
Albert Wabnegger

AbstractAn extremely bitter taste can signal food spoilage, and therefore typically elicits disgust. The present cross-modal functional magnetic resonance imaging experiment investigated whether the personality trait ‘disgust propensity’ (DP; temporally stable tendency to experience disgust across different situations) has an influence on the processing of visual food cues during bitter aftertaste perception. Thirty females with high DP and 30 females with low DP viewed images depicting sweet food (e.g., cakes, ice cream) and vegetables, once in combination with an extremely bitter aftertaste (concentrated wormwood tea), and once with a neutral taste (water). Females highly prone to disgust (compared to low disgust-prone females) showed increased activity in the anterior cingulate cortex (ACC) and increased mPFC-insula connectivity when presented with the mismatch of a bitter aftertaste and visual cues of sweet food. The ACC is involved in conflict monitoring and is strongly interconnected with insular areas. This connection plays a critical role in awareness of changes in homeostatic states. Our findings indicate that the personality trait DP is associated with cross-modal integration processes of disgust-relevant information. Females high in DP were more alert to food-related sensory mismatch (pleasant visual features, aversive taste) than females low in DP.


2013 ◽  
Vol 109 (11) ◽  
pp. 2732-2738 ◽  
Author(s):  
Elias B. Issa ◽  
Xiaoqin Wang

During sleep, changes in brain rhythms and neuromodulator levels in cortex modify the properties of individual neurons and the network as a whole. In principle, network-level interactions during sleep can be studied by observing covariation in spontaneous activity between neurons. Spontaneous activity, however, reflects only a portion of the effective functional connectivity that is activated by external and internal inputs (e.g., sensory stimulation, motor behavior, and mental activity), and it has been shown that neural responses are less correlated during external sensory stimulation than during spontaneous activity. Here, we took advantage of the unique property that the auditory cortex continues to respond to sounds during sleep and used external acoustic stimuli to activate cortical networks for studying neural interactions during sleep. We found that during slow-wave sleep (SWS), local (neuron-neuron) correlations are not reduced by acoustic stimulation remaining higher than in wakefulness and rapid eye movement sleep and remaining similar to spontaneous activity correlations. This high level of correlations during SWS complements previous work finding elevated global (local field potential-local field potential) correlations during sleep. Contrary to the prediction that slow oscillations in SWS would increase neural correlations during spontaneous activity, we found little change in neural correlations outside of periods of acoustic stimulation. Rather, these findings suggest that functional connections recruited in sound processing are modified during SWS and that slow rhythms, which in general are suppressed by sensory stimulation, are not the sole mechanism leading to elevated network correlations during sleep.


2014 ◽  
Vol 111 (3) ◽  
pp. 481-487 ◽  
Author(s):  
Arezoo Pooresmaeili ◽  
Dominik R. Bach ◽  
Raymond J. Dolan

Deciding whether a stimulus is the “same” or “different” from a previous presented one involves integrating among the incoming sensory information, working memory, and perceptual decision making. Visual selective attention plays a crucial role in selecting the relevant information that informs a subsequent course of action. Previous studies have mainly investigated the role of visual attention during the encoding phase of working memory tasks. In this study, we investigate whether manipulation of bottom-up attention by changing stimulus visual salience impacts on later stages of memory-based decisions. In two experiments, we asked subjects to identify whether a stimulus had either the same or a different feature to that of a memorized sample. We manipulated visual salience of the test stimuli by varying a task-irrelevant feature contrast. Subjects chose a visually salient item more often when they looked for matching features and less often so when they looked for a nonmatch. This pattern of results indicates that salient items are more likely to be identified as a match. We interpret the findings in terms of capacity limitations at a comparison stage where a visually salient item is more likely to exhaust resources leading it to be prematurely parsed as a match.


Sign in / Sign up

Export Citation Format

Share Document