scholarly journals Boreal marine fauna from the Barents Sea disperse to Arctic Northeast Greenland

2018 ◽  
Author(s):  
Adam J. Andrews ◽  
Jørgen S. Christiansen ◽  
Shripathi Bhat ◽  
Arve Lynghammar ◽  
Jon-Ivar Westgaard ◽  
...  

As a result of ocean warming, the species composition of the Arctic seas has begun to shift in a boreal direction. One ecosystem prone to fauna shifts is the Northeast Greenland shelf. The dispersal route taken by boreal fauna to this area is, however, not known. This knowledge is essential to predict to what extent boreal biota will colonise Arctic habitats. Using population genetics, we show that Atlantic cod (Gadus morhua), beaked redfish (Sebastes mentella), and deep-sea shrimp (Pandalus borealis) specimens recently found on the Northeast Greenland shelf originate from the Barents Sea, and suggest that pelagic offspring were dispersed via advection across the Fram Strait. Our results indicate that boreal invasions of Arctic habitats can be driven by advection, and that the fauna of the Barents Sea can project into adjacent habitats with the potential to colonise putatively isolated Arctic ecosystems such as Northeast Greenland.

2021 ◽  
pp. 179-194
Author(s):  
I.O. Dumanskaya ◽  

The warming of the Arctic, especially intensified at the beginning of the XXI century, is accompanied by a significant decrease in the area of ice cover in the Arctic seas. The article shows the quantitative changes in the ice parameters of the Barents Sea, as well as factors affecting the formation of ice cover in recent years. In the twenty-first century the frequency of occurrence of mild winters has increased by 17%, the frequency of severe winters has decreased by 19%. Significantly increased the temperature at the meteorological station Malye Karmakuly, water temperature at transect "Kola Meridian", atmospheric and oceanic heat fluxes, and speed of sea currents on the Western border of the Barents sea. The duration of the ice period decreased by an average of 2–3 weeks, and the rate of reduction of ice cover was 7.2% for 10 years. This is the highest speed compared to other Arctic seas. The article shows that the variability of the ice cover of the Barents Sea and other parameters of the natural environment in the region has the cyclic character. Presumably, the cycle period is close to 84 years, which corresponds to the orbital period of Uranium. The minimum sea ice extent after 1935–1945 is expected in the period 2019–2029.


Zootaxa ◽  
2018 ◽  
Vol 4508 (3) ◽  
pp. 427
Author(s):  
IVAN O. NEKHAEV

Five species of the family Cancellariidae are currently known from Arctic seas: Admete contabulata Friele, 1879, A. clivicola Høisæter, 2011, A. solida (Aurivillius, 1885), A. viridula (Fabricius, 1780) and Iphinopsis inflata (Friele, 1879) (Golikov et al. 2001; Kantor & Sysoev 2006; Høisæter 2011). Admete contabulata, A. clivicola and Iphinopsis inflata are only known from the Atlantic part of the Arctic, i.e. Norwegian and southwestern Barents seas (Høisæter 2011; Nekhaev 2014). Admete solida has been rarely reported since its first description from the Bering Strait (Sysoev & Kantor 2002), however Nekhaev & Krol (2017) recently reported a specimen from the eastern region of the Barents Sea that is similar in morphology to the holotype of this species. Admete viridula is the only representative of Admete reported from Siberian seas (Golikov et al. 2001; Lyubin 2003; Kantor & Sysoev, 2006). 


1981 ◽  
Vol 4 (6) ◽  
pp. 527-532 ◽  
Author(s):  
E. C. EGIDIUS ◽  
J. V. JOHANNESSEN ◽  
E. LANGE

2021 ◽  
pp. 25-43
Author(s):  
A.E. Rybalko ◽  
◽  
M.Yu. Tokarev ◽  

Hot questions in the modern Quaternary geology of the Arctic seas associated with their glaciation are discussed in this article. The questions of the history of the occurrence of the problem of shelf glaciation or “drift” accumulation of boulder-bearing sediments are considered in detail. The results of seismic-acoustic studies and their interpretation with the aim of seismic stratigraphic and genetic partition of the cover of loose sediments of Quaternary age are considered in detail. Arguments are presented in favor of the continental origin of glaciers (Novaya Zemlya, Ostrovnoy and Scandinavian), which in the late Neopleistocene spread to the shelf of the Barents Sea and occupied its surface to depths of 120−150 m. Further development of glaciation was already due to the expansion of the area of shelves glaciers. The facies zoning of glacial-marine deposits is estimated, which is related to the distance from the front of the glaciers. It is concluded that already at the end of the Late Pleistocene, most of the modern Barents Sea was free from glaciers and from the annual cover of pack ice. Data on the absence of the area distribution of frozen sediment strata within the modern Barents Sea shelf are presented.


2016 ◽  
Vol 97 (8) ◽  
pp. 1605-1616 ◽  
Author(s):  
Alexey V. Golikov ◽  
Rushan M. Sabirov ◽  
Pavel A. Lubin

Studies on the quantitative distribution of cephalopods in the Arctic are limited, and almost completely absent for the Barents Sea. It is known that the most abundant cephalopods in the Arctic are Rossia palpebrosa and Gonatus fabricii. Their biomass and abundance have been assessed for the first time in the Barents Sea and adjacent waters. The maximum biomass of R. palpebrosa in the Barents Sea was 6.216–6.454 thousand tonnes with an abundance of 521.5 million specimens. Increased densities of biomass were annually registered in the north-eastern parts of the Barents Sea. The maximum biomass of G. fabricii in the Barents Sea was 24.797 thousand tonnes with an abundance of 1.705 billion specimens. The areas with increased density of biomass (higher than 100 kg km−2) and abundance (more than 10,000 specimens km−2) were concentrated in deep-water troughs in the marginal parts of the Barents Sea and in adjacent deep-water areas. The biomass and abundance of R. palpebrosa and G. fabricii in the Barents Sea were much lower than those of major taxa of invertebrates and fish and than those of cephalopods in other parts of the World Ocean. It has been suggested that the importance of cephalopods in the Arctic ecosystems, at least in terms of quantitative distribution, could be somewhat lower than in the Antarctic or the tropics. Despite the impact of ongoing warming of the Arctic on the distribution of cephalopods being described repeatedly already, no impact of the current year's climate on the studied species was found. The only exception was the abundance of R. palpebrosa, which correlated with the current year's climate conditions.


2009 ◽  
Vol 66 (6) ◽  
pp. 1225-1232 ◽  
Author(s):  
Viacheslav A. Ermolchev

Abstract Ermolchev, V. A., 2009. Methods and results of in situ target-strength measurements of Atlantic cod (Gadus morhua) during combined trawl-acoustic surveys. – ICES Journal of Marine Science, 66: 1225–1232. This paper presents methods for collecting acoustic and biological data, including in situ target-strength (TS) estimates of fish, with results presented for Atlantic cod (Gadus morhua) obtained from combined trawl-acoustic surveys. These include fish in the small, average, and maximum length classes, within the range 5–136 cm (total fish length, LT). The investigations were done using Simrad EK500/EK60 echosounders with split-beam transducers and special post-processing software. Based on an analysis of data collected in the Barents Sea during 1998–2007, a relationship TS = 25.2 log10(LT) − 74.8 was obtained for Atlantic cod at 38 kHz, with TS in dB and LT in centimetres. Seasonally, and for depths between 50 and 500 m, the variability in cod TS was 3.1 dB, decreasing with depth. The largest day–night difference in mean TS was in August–September, with changes as large as 1.0–1.7 dB. In the other seasons, the day–night difference was <1.0 dB.


Sign in / Sign up

Export Citation Format

Share Document