scholarly journals Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction

2018 ◽  
Author(s):  
Jacqueline A. Robinson ◽  
Jannikke Räikkönen ◽  
Leah M. Vucetich ◽  
John A. Vucetich ◽  
Rolf O. Peterson ◽  
...  

AbstractThe observation that small, isolated populations often suffer reduced fitness as a result of inbreeding depression has guided conservation theory and practice for decades. However, investigating the genome-wide dynamics associated with inbreeding depression in natural populations is only now feasible with relatively inexpensive sequencing technology and annotated reference genomes. To characterize the genome-wide effects of intense inbreeding and isolation, we sequenced complete genomes from an iconic inbred population, the gray wolves (Canis lupus) of Isle Royale. Through comparison with other wolf genomes from a variety of demographic histories, we found that Isle Royale wolf genomes contain extensive runs of homozygosity, but neither the overall level of heterozygosity nor the number of deleterious variants per genome were reliable predictors of inbreeding depression. These findings are consistent with the hypothesis that severe inbreeding depression results from increased homozygosity of strongly deleterious recessive mutations, which are more prevalent in historically large source populations. Our results have particular relevance in light of the recently proposed reintroduction of wolves to Isle Royale, as well as broader implications for management of genetic variation in the fragmented landscape of the modern world.


2019 ◽  
Vol 5 (5) ◽  
pp. eaau0757 ◽  
Author(s):  
Jacqueline A. Robinson ◽  
Jannikke Räikkönen ◽  
Leah M. Vucetich ◽  
John A. Vucetich ◽  
Rolf O. Peterson ◽  
...  

The observation that small isolated populations often suffer reduced fitness from inbreeding depression has guided conservation theory and practice for decades. However, investigating the genome-wide dynamics associated with inbreeding depression in natural populations is only now feasible with relatively inexpensive sequencing technology and annotated reference genomes. To characterize the genome-wide effects of intense inbreeding and isolation, we performed whole-genome sequencing and morphological analysis of an iconic inbred population, the gray wolves (Canis lupus) of Isle Royale. Through population genetic simulations and comparison with wolf genomes from a variety of demographic histories, we find evidence that severe inbreeding depression in this population is due to increased homozygosity of strongly deleterious recessive mutations. Our results have particular relevance in light of the recent translocation of wolves from the mainland to Isle Royale, as well as broader implications for management of genetic variation in the fragmented landscape of the modern world.



2018 ◽  
Author(s):  
Thomas Brom ◽  
Vincent Castric ◽  
Sylvain Billiard

AbstractMany hermaphroditic flowering plants species possess a genetic self-incompatibility (SI) system that prevents self-fertilization and is typically controlled by a single multiallelic locus, the S-locus. The conditions under which SI can be stably maintained in single isolated populations are well known and depend chiefly on the level of inbreeding depression and the number of SI alleles segregating at the S-locus. However, while both the number of SI alleles and the level of inbreeding depression are potentially affected by population subdivision, the conditions for the maintenance of SI in subdivided populations remain to be studied. In this paper, we combine analytical predictions and two different individual-based simulation models to show that population subdivision can severely compromise the maintenance of SI. Under the conditions we explored, this effect is mainly driven by the decrease of the local diversity of SI alleles rather than by a change in the dynamics of inbreeding depression. We discuss the implications of our results for the interpretation of empirical data on the loss of SI in natural populations.Data accessibility statementNo data to be archived



2019 ◽  
Author(s):  
Christopher C. Kyriazis ◽  
Robert K. Wayne ◽  
Kirk E. Lohmueller

AbstractHuman-driven habitat fragmentation and loss have led to a proliferation of small and isolated plant and animal populations with high risk of extinction. One of the main threats to extinction in these populations is inbreeding depression, which is primarily caused by the exposure of recessive deleterious mutations as homozygous by inbreeding. The typical approach for managing these populations is to maintain high genetic diversity, often by translocating individuals from large populations to initiate a ‘genetic rescue.’ However, the limitations of this approach have recently been highlighted by the demise of the gray wolf population on Isle Royale, which was driven to the brink of extinction soon after the arrival of a migrant from the large mainland wolf population. Here, we use a novel population genetic simulation framework to investigate the role of genetic diversity, deleterious variation, and demographic history in mediating extinction risk due to inbreeding depression in small populations. We show that, under realistic models of dominance, large populations harbor high levels of recessive strongly deleterious variation due to these mutations being hidden from selection in the heterozygous state. As a result, when large populations contract, they experience a substantially elevated risk of extinction after these strongly deleterious mutations are exposed by inbreeding. Moreover, we demonstrate that although translocating individuals to small populations is broadly effective as a means to reduce extinction risk, using small or moderate-sized source populations rather than large source populations can greatly increase the effectiveness of genetic rescue due to greater purging in these smaller populations. Our findings challenge the traditional conservation paradigm that focuses on maximizing genetic diversity to reduce extinction risk in favor of a view that emphasizes minimizing strongly deleterious variation. These insights have important implications for managing small and isolated populations in the increasingly fragmented landscape of the Anthropocene.Impact SummaryNumerous threats to extinction exist for small populations, including the detrimental effects of inbreeding. Although much of the focus in reducing these harmful effects in small populations has been on maintaining high genetic diversity, here we use simulations to demonstrate that emphasis should instead be placed on minimizing strongly deleterious variation. More specifically, we show that historically-large populations with high levels of genetic diversity also harbor elevated levels of recessive strongly deleterious mutations hidden in the heterozygous state. Thus, when these populations contract, inbreeding can expose these strongly deleterious mutations as homozygous and lead to severe inbreeding depression and rapid extinction. Moreover, we demonstrate that, although translocating individuals to these small populations to perform a ‘genetic rescue’ is broadly beneficial, the effectiveness of this strategy can be greatly increased by targeting historically-smaller source populations where recessive strongly deleterious mutations have been purged. These results challenge long-standing views on how to best conserve small and isolated populations facing the threat of inbreeding depression, and have immediate implications for preserving biodiversity in the increasingly fragmented landscape of the Anthropocene.



PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009676
Author(s):  
Jesse A. Garcia ◽  
Kirk E. Lohmueller

Evolutionary forces like Hill-Robertson interference and negative epistasis can lead to deleterious mutations being found on distinct haplotypes. However, the extent to which these forces depend on the selection and dominance coefficients of deleterious mutations and shape genome-wide patterns of linkage disequilibrium (LD) in natural populations with complex demographic histories has not been tested. In this study, we first used forward-in-time simulations to predict how negative selection impacts LD. Under models where deleterious mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to be carried on different haplotypes relative to pairs of synonymous SNPs. In contrast, for recessive mutations, there is no consistent ordering of how selection coefficients affect LD decay, due to the complex interplay of different evolutionary effects. We then examined empirical data of modern humans from the 1000 Genomes Project. LD between derived alleles at nonsynonymous SNPs is lower compared to pairs of derived synonymous variants, suggesting that nonsynonymous derived alleles tend to occur on different haplotypes more than synonymous variants. This result holds when controlling for potential confounding factors by matching SNPs for frequency in the sample (allele count), physical distance, magnitude of background selection, and genetic distance between pairs of variants. Lastly, we introduce a new statistic HR(j) which allows us to detect interference using unphased genotypes. Application of this approach to high-coverage human genome sequences confirms our finding that nonsynonymous derived alleles tend to be located on different haplotypes more often than are synonymous derived alleles. Our findings suggest that interference may play a pervasive role in shaping patterns of LD between deleterious variants in the human genome, and consequently influences genome-wide patterns of LD.



2014 ◽  
Vol 111 (10) ◽  
pp. 3775-3780 ◽  
Author(s):  
Joseph I. Hoffman ◽  
Fraser Simpson ◽  
Patrice David ◽  
Jolianne M. Rijks ◽  
Thijs Kuiken ◽  
...  

Proxy measures of genome-wide heterozygosity based on approximately 10 microsatellites have been used to uncover heterozygosity fitness correlations (HFCs) for a wealth of important fitness traits in natural populations. However, effect sizes are typically very small and the underlying mechanisms remain contentious, as a handful of markers usually provides little power to detect inbreeding. We therefore used restriction site associated DNA (RAD) sequencing to accurately estimate genome-wide heterozygosity, an approach transferrable to any organism. As a proof of concept, we first RAD sequenced oldfield mice (Peromyscus polionotus) from a known pedigree, finding strong concordance between the inbreeding coefficient and heterozygosity measured at 13,198 single-nucleotide polymorphisms (SNPs). When applied to a natural population of harbor seals (Phoca vitulina), a weak HFC for parasite infection based on 27 microsatellites strengthened considerably with 14,585 SNPs, the deviance explained by heterozygosity increasing almost fivefold to a remarkable 49%. These findings arguably provide the strongest evidence to date of an HFC being due to inbreeding depression in a natural population lacking a pedigree. They also suggest that under some circumstances heterozygosity may explain far more variation in fitness than previously envisaged.



2017 ◽  
Author(s):  
Ivo M. Chelo ◽  
Bruno Afonso ◽  
Sara Carvalho ◽  
Ioannis Theologidis ◽  
Christine Goy ◽  
...  

AbstractClassical theory on the origin and evolution of selfing and outcrossing relies on the role of inbreeding depression created by unlinked partially-deleterious recessive alleles to predict that individuals from natural populations predominantly self or outcross. Comparative data indicates, however, that maintenance of partial selfing and outcrossing at intermediate frequencies is common in nature. In part to explain the presence of mixed reproductive modes within populations, several hypotheses regarding the evolution of inbreeding depression have been put forward based on the complex interaction of linkage and identity disequilibrium among fitness loci, together with Hill-Robertson effects. We here ask what is the genetic basis of inbreeding depression so that populations with intermediate selfing rates can eliminate it while maintain potentially adaptive genetic diversity. For this, we use experimental evolution in the nematode C. elegans under partial selfing and compare it to the experimental evolution of populations evolved under exclusive selfing and predominant outcrossing. We find that the ancestral risk of extinction upon enforced inbreeding by selfing is maintained when populations evolve under predominant outcrossing, but reduced when populations evolve under partial or exclusive selfing. Analysis of genome-wide single-nucleotide polymorphism (SNP) during experimental evolution and after enforced inbreeding suggests that, under partial selfing, populations were purged of unlinked deleterious recessive alleles that segregate in the ancestral population, which in turn allowed the expression of unlinked overdominant fitness loci. Taken together, these observations indicate that populations evolving under partial selfing gain the short-term benefits of selfing, in purging deleterious recessive alleles, but also the long-term benefits of outcrossing, in maintaining genetic diversity that may important for future adaptation.



Author(s):  
Jesse A. Garcia ◽  
Kirk E. Lohmueller

AbstractWhile there has been extensive work on patterns of linkage disequilibrium (LD) for neutral loci, the extent to which negative selection impacts LD is less clear. Forces like Hill-Robertson interference and negative epistasis are expected to lead to deleterious mutations being found on distinct haplotypes. However, the extent to which these forces depend on the selection and dominance coefficients of deleterious mutations and shape genome-wide patterns of LD in natural populations with complex demographic histories has not been tested. In this study, we first used forward-in-time simulations to generate predictions as to how selection impacts LD. Under models where deleterious mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to be carried on different haplotypes, generating an excess of negative LD relative to pairs of synonymous SNPs. In contrast, for recessive mutations, there is no consistent ordering of how selection coefficients affect r2 decay. We then examined empirical data of modern humans from the 1000 Genomes Project. LD between derived nonsynonymous SNPs is more negative compared to pairs of derived synonymous variants. This result holds when matching SNPs for frequency in the sample (allele count), physical distance, magnitude of background selection, and genetic distance between pairs of variants, suggesting that this result is not due to these potential confounding factors. Lastly, we introduce a new statistic HR(j) which allows us to detect interference using unphased genotypes. Application of this approach to high-coverage human genome sequences confirms our finding that deleterious alleles tend to be located on different haplotypes more often than are neutral alleles. Our findings suggest that either interference or negative epistasis plays a pervasive role in shaping patterns of LD between deleterious variants in the human genome, and consequently influencing genome-wide patterns of LD.



2020 ◽  
Vol 27 (3) ◽  
pp. 5-10
Author(s):  
Yu.P. Adler ◽  

Dr. Edwards Deming, whose 120th birthday falls on October 14, 2020, has made outstanding contributions to management theory and practice, mathematical statistics and many other areas of human endeavor. This work, written for the anniversary of E. Deming, examines the paradoxes arising from his teachings. They relate, inter alia, to competition, motivation and remuneration, the use of sampling methods, on-the-job training, operational definitions and much more. Resolving these paradoxes is the path to a deeper understanding of the modern world and to the improvement of management practice. Already during Deming’s lifetime, numerous attempts were made to revise his teachings, and now there is a desire to abandon the use and development of his heritage. This is alarming and worrying.



2017 ◽  
Vol 7 (7) ◽  
pp. 2391-2403 ◽  
Author(s):  
Amanda S Lobell ◽  
Rachel R Kaspari ◽  
Yazmin L Serrano Negron ◽  
Susan T Harbison

Abstract Ovariole number has a direct role in the number of eggs produced by an insect, suggesting that it is a key morphological fitness trait. Many studies have documented the variability of ovariole number and its relationship to other fitness and life-history traits in natural populations of Drosophila. However, the genes contributing to this variability are largely unknown. Here, we conducted a genome-wide association study of ovariole number in a natural population of flies. Using mutations and RNAi-mediated knockdown, we confirmed the effects of 24 candidate genes on ovariole number, including a novel gene, anneboleyn (formerly CG32000), that impacts both ovariole morphology and numbers of offspring produced. We also identified pleiotropic genes between ovariole number traits and sleep and activity behavior. While few polymorphisms overlapped between sleep parameters and ovariole number, 39 candidate genes were nevertheless in common. We verified the effects of seven genes on both ovariole number and sleep: bin3, blot, CG42389, kirre, slim, VAChT, and zfh1. Linkage disequilibrium among the polymorphisms in these common genes was low, suggesting that these polymorphisms may evolve independently.



Author(s):  
Samuel D. Hervey ◽  
Linda Y. Rutledge ◽  
Brent R. Patterson ◽  
Mark C. Romanski ◽  
John A. Vucetich ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document