scholarly journals Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

2018 ◽  
Author(s):  
Simao Coelho ◽  
Jongho Baek ◽  
Matthew S. Graus ◽  
James M. Halstead ◽  
Philip R. Nicovich ◽  
...  

Single-molecule localization microscopy (SMLM) promises to provide truly molecular scale images of biological specimens1–5. However, mechanical instabilities in the instrument, readout errors and sample drift constitute significant challenges and severely limit both the useable data acquisition length and the localization accuracy of single molecule emitters6. Here, we developed an actively stabilized total internal fluorescence (TIRF) microscope that performs 3D real-time drift corrections and achieves a stability of ≤1 nm. Self-alignment of the emission light path and corrections of readout errors of the camera automate channel alignment and ensure localization precisions of 1-4 nm in DNA origami structures and cells for different labels. We used Feedback SMLM to measure the separation distance of signaling receptors and phosphatases in T cells. Thus, an improved SMLM enables direct distance measurements between molecules in intact cells on the scale between 1-20 nm, potentially replacing Förster resonance energy transfer (FRET) to quantify molecular interactions7. In summary, by overcoming the major bottlenecks in SMLM imaging, it is possible to generate molecular images with nanometer accuracy and conduct distance measurements on the biological relevant length scales.

2020 ◽  
Vol 6 (16) ◽  
pp. eaay8271 ◽  
Author(s):  
Simao Coelho ◽  
Jongho Baek ◽  
Matthew S. Graus ◽  
James M. Halstead ◽  
Philip R. Nicovich ◽  
...  

Single-molecule localization microscopy (SMLM) has the potential to quantify the diversity in spatial arrangements of molecules in intact cells. However, this requires that the single-molecule emitters are localized with ultrahigh precision irrespective of the sample format and the length of the data acquisition. We advance SMLM to enable direct distance measurements between molecules in intact cells on the scale between 1 and 20 nm. Our actively stabilized microscope combines three-dimensional real-time drift corrections and achieves a stabilization of <1 nm and localization precision of ~1 nm. To demonstrate the biological applicability of the new microscope, we show a 4- to 7-nm difference in spatial separations between signaling T cell receptors and phosphatases (CD45) in active and resting T cells. In summary, by overcoming the major bottlenecks in SMLM imaging, it is possible to generate molecular images with nanometer accuracy and conduct distance measurements on the biological relevant length scales.


2021 ◽  
Vol 1 ◽  
Author(s):  
Jan Christoph Thiele ◽  
Oleksii Nevskyi ◽  
Dominic A. Helmerich ◽  
Markus Sauer ◽  
Jörg Enderlein

Fluorescence-lifetime single molecule localization microscopy (FL-SMLM) adds the lifetime dimension to the spatial super-resolution provided by SMLM. Independent of intensity and spectrum, this lifetime information can be used, for example, to quantify the energy transfer efficiency in Förster Resonance Energy Transfer (FRET) imaging, to probe the local environment with dyes that change their lifetime in an environment-sensitive manner, or to achieve image multiplexing by using dyes with different lifetimes. We present a thorough theoretical analysis of fluorescence-lifetime determination in the context of FL-SMLM and compare different lifetime-fitting approaches. In particular, we investigate the impact of background and noise, and give clear guidelines for procedures that are optimized for FL-SMLM. We do also present and discuss our public-domain software package “Fluorescence-Lifetime TrackNTrace,” which converts recorded fluorescence microscopy movies into super-resolved FL-SMLM images.


2019 ◽  
Vol 116 (10) ◽  
pp. 4275-4284 ◽  
Author(s):  
Stefan Niekamp ◽  
Jongmin Sung ◽  
Walter Huynh ◽  
Gira Bhabha ◽  
Ronald D. Vale ◽  
...  

Light microscopy is a powerful tool for probing the conformations of molecular machines at the single-molecule level. Single-molecule Förster resonance energy transfer can measure intramolecular distance changes of single molecules in the range of 2 to 8 nm. However, current superresolution measurements become error-prone below 25 nm. Thus, new single-molecule methods are needed for measuring distances in the 8- to 25-nm range. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1-nm accuracy at distances >2 nm. These techniques can be implemented in high throughput using a standard total internal reflection fluorescence microscope and open-source software. We applied our two-color localization method to uncover an unexpected ∼4-nm nucleotide-dependent conformational change in the coiled-coil “stalk” of the motor protein dynein. We anticipate that these methods will be useful for high-accuracy distance measurements of single molecules over a wide range of length scales.


2017 ◽  
Author(s):  
Stefan Niekamp ◽  
Jongmin Sung ◽  
Walter Huynh ◽  
Gira Bhabha ◽  
Ronald D. Vale ◽  
...  

To uncover the mechanisms of molecular machines it is useful to probe their structural conformations. Single-molecule Förster resonance energy transfer (smFRET) is a powerful tool for measuring intra-molecular shape changes of single-molecules, but is confined to distances of 2-8 nm. Current super-resolution measurements are error prone at <25 nm. Thus, reliable high-throughput distance information between 8-25 nm is currently difficult to achieve. Here, we describe methods that utilize information about localization and imaging errors to measure distances between two different color fluorophores with ∼1 nm accuracy at any distance >2 nm, using a standard TIRF microscope and open-source software. We applied our two-color localization method to uncover a ∼4 nm conformational change in the “stalk” of the motor protein dynein, revealing unexpected flexibility in this antiparallel coiled-coil domain. These new methods enable high-accuracy distance measurements of single-molecules that can be used over a wide range of length scales.


2008 ◽  
Vol 36 (4) ◽  
pp. 738-744 ◽  
Author(s):  
Yusdi Santoso ◽  
Ling Chin Hwang ◽  
Ludovic Le Reste ◽  
Achillefs N. Kapanidis

Single-molecule fluorescence methods, particularly single-molecule FRET (fluorescence resonance energy transfer), have provided novel insights into the structure, interactions and dynamics of biological systems. ALEX (alternating-laser excitation) spectroscopy is a new method that extends single-molecule FRET by providing simultaneous information about structure and stoichiometry; this new information allows the detection of interactions in the absence of FRET and extends the dynamic range of distance measurements that are accessible through FRET. In the present article, we discuss combinations of ALEX with confocal microscopy for studying in-solution and in-gel molecules; we also discuss combining ALEX with TIRF (total internal reflection fluorescence) for studying surface-immobilized molecules. We also highlight applications of ALEX to the study of protein–nucleic acid interactions.


2020 ◽  
Author(s):  
Martin F. Peter ◽  
Christian Gebhardt ◽  
Rebecca Mächtel ◽  
Janin Glaenzer ◽  
Gavin H. Thomas ◽  
...  

AbstractPulsed electron-electron double resonance spectroscopy (PELDOR or DEER) and single molecule Förster resonance energy transfer spectroscopy (smFRET) are recent additions to the toolbox of integrative structural biology. Both methods are frequently used to visualize conformational changes and to determine nanometer-scale distances in biomacromolecules including proteins and nucleic acids. A prerequisite for the application of PELDOR/DEER and smFRET is the presence of suitable spin centers or fluorophores in the target molecule, which are usually introduced via chemical biology methods. The application portfolio of the two methods is overlapping: each allows determination of distances, to monitor distance changes and to visualize conformational heterogeneity and -dynamics. Both methods can provide qualitative information that facilitates mechanistic understanding, for instance on conformational changes, as well as quantitative data for structural modelling. Despite their broad application, a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET is still missing and we set out here to fill this gap. For this purpose, we prepared a library of double cysteine mutants of three well-studied substrate binding proteins that undergo large-scale conformational changes upon ligand binding. The distances between the introduced spin- or fluorescence labels were determined via PELDOR/DEER and smFRET, using established standard experimental protocols and data analysis routines. The experiments were conducted in the presence and absence of the natural ligands to investigate how well the ligand-induced conformational changes could be detected by the two methods. Overall, we found good agreement for the determined distances, yet some surprising inconsistencies occurred. In our set of experiments, we identified the source of discrepancies as the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. Our study highlights strength and weaknesses of both methods and paves the way for a higher confidence in quantitative comparison of PELDOR/DEER and smFRET results in the future.


2019 ◽  
Author(s):  
Jochen M. Reichel ◽  
Thomas Vomhof ◽  
Jens Michaelis

AbstractWe investigate the influence of different accuracy-detection rate trade-offs on image reconstruction in single molecule localization microscopy. Our main focus is the investigation of image artifacts experienced when using low localization accuracy, especially in the presence of sample drift and inhomogeneous background. In this context we present a newly developed SMLM software termed FIRESTORM which is optimized for high accuracy reconstruction. For our analysis we used in silico SMLM data and compared the reconstructed images to the ground truth data. We observe two discriminable reconstruction populations of which only one shows the desired localization behavior.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


Sign in / Sign up

Export Citation Format

Share Document