scholarly journals Domain topology, stability, and translation speed determine mechanical force generation on the ribosome

2018 ◽  
Author(s):  
Sarah E. Leininge ◽  
Fabio Trovato ◽  
Daniel A. Nissley ◽  
Edward P. O’Brien

AbstractThe concomitant folding of a nascent protein domain with its synthesis can generate mechanical forces that act on the ribosome and alter translation speed. Such changes in speed can affect the structure and function of the newly synthesized protein as well as cellular phenotype. The domain properties that govern force generation have yet to be identified and understood, and the influence of translation speed is unknown as all reported measurements have been carried out on arrested ribosomes. Here, using coarse-grained molecular simulations and statistical mechanical modeling of protein synthesis, we demonstrate that force generation is determined by a domain’s stability and topology, as well as translation speed. The statistical mechanical models we create predict how force profiles depend on these properties. These results indicate that force measurements on arrested ribosomes will not always accurately reflect what happens in a cell, especially for slow-folding domains, and suggest the possibility that certain domain properties may be enriched or depleted across the structural proteome of organisms through evolutionary selection pressures to modulate protein synthesis speed and post-translational protein behavior.Significance StatementMechanochemistry, the influence of molecular-scale mechanical forces on chemical processes, can occur on actively translating ribosomes through the force-generating actions of motor proteins and the co-translational folding of domains. Such forces are transmitted to the ribosome’s catalytic core and alter rates of protein synthesis; representing a form of mechanical allosteric communication. These changes in translation-elongation kinetics are biologically important because they can influence protein structure, function, and localization within a cell. Many fundamental questions are unresolved concerning the properties of protein domains that determine mechanical force generation, the effect of translation speed on this force, and exactly how, at the molecular level, force is generated. In this study we answer these questions using cutting-edge molecular simulations and statistical mechanical modeling.


2019 ◽  
Vol 116 (12) ◽  
pp. 5523-5532 ◽  
Author(s):  
Sarah E. Leininger ◽  
Fabio Trovato ◽  
Daniel A. Nissley ◽  
Edward P. O’Brien

The concomitant folding of a nascent protein domain with its synthesis can generate mechanical forces that act on the ribosome and alter translation speed. Such changes in speed can affect the structure and function of the newly synthesized protein as well as cellular phenotype. The domain properties that govern force generation have yet to be identified and understood, and the influence of translation speed is unknown because all reported measurements have been carried out on arrested ribosomes. Here, using coarse-grained molecular simulations and statistical mechanical modeling of protein synthesis, we demonstrate that force generation is determined by a domain’s stability and topology, as well as translation speed. The statistical mechanical models we create predict how force profiles depend on these properties. These results indicate that force measurements on arrested ribosomes will not always accurately reflect what happens in a cell, especially for slow-folding domains, and suggest the possibility that certain domain properties may be enriched or depleted across the structural proteome of organisms through evolutionary selection pressures to modulate protein synthesis speed and posttranslational protein behavior.



2011 ◽  
Vol 106 (4) ◽  
Author(s):  
Eyal Karzbrun ◽  
Jonghyeon Shin ◽  
Roy H. Bar-Ziv ◽  
Vincent Noireaux


Author(s):  
Hadi Meidani ◽  
Justin B. Hooper ◽  
Dmitry Bedrov ◽  
Robert M. Kirby


Author(s):  
Viktor Klippenstein ◽  
Madhusmita Tripathy ◽  
Gerhard Jung ◽  
Friederike Schmid ◽  
Nico F. A. van der Vegt




Author(s):  
H. Jelger Risselada ◽  
Helmut Grubmüller

AbstractFusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.



2003 ◽  
Vol 100 (5) ◽  
pp. 2825-2830 ◽  
Author(s):  
J. Niquet ◽  
R. A. Baldwin ◽  
S. G. Allen ◽  
D. G. Fujikawa ◽  
C. G. Wasterlain


2010 ◽  
Vol 667-669 ◽  
pp. 925-930
Author(s):  
S.V. Krymskiy ◽  
Elena Avtokratova ◽  
M.V. Markushev ◽  
Maxim Yu. Murashkin ◽  
O.S. Sitdikov

The effects of severe plastic deformation (SPD) by isothermal rolling at the temperature of liquid nitrogen combined with prior- and post-SPD heat treatment, on microstructure and hardness of Al-4.4%Cu-1.4%Mg-0.7%Mn (D16) alloy were investigated. It was found no nanostructuring even after straining to 75%. Сryodeformation leads to microshear banding and processing the high-density dislocation substructures with a cell size of ~ 100-200 nm. Such a structure remains almost stable under 1 hr annealing up to 200oC and with further temperature increase initially transforms to bimodal with a small fraction of nanograins and then to uniform coarse grained one. It is found the change in the alloy post–SPD aging response leading to more active decomposition of the preliminary supersaturated aluminum solid solution, and to the alloy extra hardening under aging with shorter times and at lower temperatures compared to T6 temper.



2014 ◽  
Vol 20 (6) ◽  
pp. 1841-1847 ◽  
Author(s):  
Fei Liu ◽  
Dan Wu ◽  
Ken Chen

AbstractMechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a “cortical shell – liquid core” structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.



Sign in / Sign up

Export Citation Format

Share Document