A Zebrafish Embryo Behaves both as a “Cortical Shell – Liquid Core” Structure and a Homogeneous Solid when Experiencing Mechanical Forces

2014 ◽  
Vol 20 (6) ◽  
pp. 1841-1847 ◽  
Author(s):  
Fei Liu ◽  
Dan Wu ◽  
Ken Chen

AbstractMechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a “cortical shell – liquid core” structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1047 ◽  
Author(s):  
Noëlle Billon ◽  
Joan Giraudeau ◽  
Jean Bouvard ◽  
Gilles Robert

Clear relationships between the semi-crystalline microstructure of injection molding polymers and their mechanical behavior are not yet totally established for all polymers. Part of this relative lack of understanding is because an unambiguous scientific approach is difficult to build up. The processing of samples promotes a microstructure which is not uniform and can be described in various ways on different scales. This introduces uncertainty in the correlations. Most completed studies were conducted on polyolefin, which exhibits an evolution of microstructure that is quite easy to observe and to correlate to mechanical properties. This paper intends to illustrate a more diffuse case. To achieve this, combined characterizations along the flow path and throughout the thickness of a plaque as well as characterizations of the local microstructure and tensile behavior of polyamide 66 are described. The microstructure was explored in terms of skin-core structure, spherulites sizes, crystallinity ratio and lamellae organization. Mechanical properties were addressed with non-monotonic tests with the use of DIC (Digital Image Correlation) to assess true behavior. The effect of humidity is also accounted for. It is demonstrated that small changes in lamellae or interlamellar amorphous phase are likely to be responsible for non-uniform mechanical properties, whereas more macroscopic levels (skin core structure, spherulites level of crystallinity ratio) appeared to be irrelevant levels of description. Consequently, the usual simplified analyses based on optical microscopy and differential scanning calorimetry (DSC) can be inefficient in improving knowledge in that field.


2015 ◽  
Vol 10 (2) ◽  
pp. 2753-2761
Author(s):  
Saad El Madani ◽  
S. ELHAMZI ◽  
A. IBNLFASSI ◽  
L. ZERROUK ◽  
O. BEN LENDA ◽  
...  

In order to master and improve the quality and properties of the final products, the major industrial challenge lies in the possibility of controlling the morphology, size of microstructures that reside within the molded pieces, as well as their defects; this is the fundamental reason according to which we are more and more interested in mastering the growth and germination of such alloys, as well as the developing structures, at the time of solidification process. The modeling reveals as a valuable aid in the mastery of the formation of such heterogeneousness: segregation cells that are incompatible with industrial requirements.   The whole work focuses upon the modeling of the segregation phenomenon of the four hypoeutectic alloys, Al1%Cu, Al2%Cu, Al3%Cu et Al4%Cu, as well as the copper effect upon certain mechanical properties of aluminum. Usually, the microstructure and mechanical behavior of such alloys as Al-Cu are directly influenced by some parameters such as composition, cooling velocity and homogenization process.


Author(s):  
M. Carraturo ◽  
G. Alaimo ◽  
S. Marconi ◽  
E. Negrello ◽  
E. Sgambitterra ◽  
...  

AbstractAdditive manufacturing (AM), and in particular selective laser melting (SLM) technology, allows to produce structural components made of lattice structures. These kinds of structures have received a lot of research attention over recent years due to their capacity to generate easy-to-manufacture and lightweight components with enhanced mechanical properties. Despite a large amount of work available in the literature, the prediction of the mechanical behavior of lattice structures is still an open issue for researchers. Numerical simulations can help to better understand the mechanical behavior of such a kind of structure without undergoing long and expensive experimental campaigns. In this work, we compare numerical and experimental results of a uniaxial tensile test for stainless steel 316L octet-truss lattice specimen. Numerical simulations are based on both the nominal as-designed geometry and the as-build geometry obtained through the analysis of µ-CT images. We find that the use of the as-build geometry is fundamental for an accurate prediction of the mechanical behavior of lattice structures.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Kenneth P. Mineart ◽  
Cameron Hong ◽  
Lucas A. Rankin

Organogels have recently been considered as materials for transdermal drug delivery media, wherein their transport and mechanical properties are among the most important considerations. Transport through organogels has only recently been investigated and findings highlight an inextricable link between gels’ transport and mechanical properties based upon the formulated polymer concentration. Here, organogels composed of styrenic triblock copolymer and different aliphatic mineral oils, each with a unique dynamic viscosity, are characterized in terms of their quasi-static uniaxial mechanical behavior and the internal diffusion of two unique solute penetrants. Mechanical testing results indicate that variation of mineral oil viscosity does not affect gel mechanical behavior. This likely stems from negligible changes in the interactions between mineral oils and the block copolymer, which leads to consistent crosslinked network structure and chain entanglement (at a fixed polymer concentration). Conversely, results from diffusion experiments highlight that two penetrants—oleic acid (OA) and aggregated aerosol-OT (AOT)—diffuse through gels at a rate inversely proportional to mineral oil viscosity. The inverse dependence is theoretically supported by the hydrodynamic model of solute diffusion through gels. Collectively, our results show that organogel solvent variation can be used as a design parameter to tailor solute transport through gels while maintaining fixed mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 721 ◽  
Author(s):  
João Pires ◽  
Camila Damásio de Paula ◽  
Victor Gomes Lauriano Souza ◽  
Ana Luísa Fernando ◽  
Isabel Coelhoso

The continuous petroleum-based plastics manufacturing generates disposal issues, spreading the problem of plastic pollution and its rise in the environment. Recently, innovative techniques and scientific research promoted biopolymers as the primary alternative for traditional plastics, raising and expanding global bioplastic production. Due to its unmatched biological and functional attributes, chitosan (Ch) has been substantially explored and employed as a biopolymeric matrix. Nevertheless, the hydrophilicity and the weak mechanical properties associated with this biopolymer represent a significant intrinsic restriction to its implementation into some commercial applications, namely, in food packaging industries. Distinct methodologies have been utilized to upgrade the mechanical and barrier properties of Ch, such as using organic or inorganic nanofillers, crosslinkers, or blends with other polymers. This review intends to analyze the most recent works that combine the action of different nanoparticle types with Ch films to reinforce their mechanical and barrier properties.


2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhenhua Yin ◽  
Hu Zhang ◽  
Jianming Zhang ◽  
Mingtang Chai

Abstract The foundation of constructions built in the permafrost areas undergo considerable creeping or thawing deformation because of the underlying ice-rich permafrost. Soil improvement may be of advantage in treating ice-rich permafrost at shallow depth. Sulphoaluminate cement was a potential material to improve frozen soil. Simultaneously, two other cements, ordinary Portland cement and Magnesium phosphate cement were selected as the comparison. The mechanical behavior of modified frozen soil was studied with thaw compression tests and unconfined compression strength tests. Meanwhile, the microscopic mechanism was explored by field emission scanning electron microscopy, particle size analysis and X-ray diffractometry. The results showed Sulphoaluminate cement was useful in reducing the thaw compression deformation and in enhancing the strength of the frozen soil. The improvement of the mechanical behavior depended mainly on two aspects: the formation of structural mineral crystals and the agglomeration of soil particles. The two main factors contributed to the improvement of mechanical properties simultaneously. The thicker AFt crystals result in a higher strength and AFt plays an important role in improving the mechanical properties of frozen soils.The study verified that Sulphoaluminate cement was an excellent stabilizer to improve ice-rich frozen soils.


2012 ◽  
Vol 529 ◽  
pp. 228-235
Author(s):  
Jie Yao ◽  
Yong Hong Zhu

Recently, our research team has been considering to applying shape memory alloys (SMA) constitutive model to analyze the large and small deformation about the SMA materials because of the thermo-dynamics and phase transformation driving force. Accordingly, our team use simulations method to illustrate the characteristics of the model in large strain deformation and small strain deformation when different loading, uniaxial tension, and shear conditions involve in the situations. Furthermore, the simulation result unveils that the difference is nuance concerning the two method based on the uniaxial tension case, while the large deformation and the small deformation results have huge difference based on shear deformation case. This research gives the way to the further research about the constitutive model of SMA, especially in the multitiaxial non-proportional loading aspects.


2020 ◽  
pp. 108128652097760
Author(s):  
Carlos Quesada ◽  
Claire Dupont ◽  
Pierre Villon ◽  
Anne-Virginie Salsac

A novel data-driven real-time procedure based on diffuse approximation is proposed to characterize the mechanical behavior of liquid-core microcapsules from their deformed shape and identify the mechanical properties of the submicron-thick membrane that protects the inner core through inverse analysis. The method first involves experimentally acquiring the deformed shape that a given microcapsule takes at steady state when it flows through a microfluidic microchannel of comparable cross-sectional size. From the mid-plane capsule profile, we deduce two characteristic geometric quantities that uniquely characterize the shape taken by the microcapsule under external hydrodynamic stresses. To identify the values of the unknown rigidity of the membrane and of the size of the capsule, we compare the geometric quantities with the values predicted numerically using a fluid-structure-interaction model by solving the three-dimensional capsule-flow interactions. The complete numerical data set is obtained off-line by systematically varying the governing parameters of the problem, i.e. the capsule-to-tube confinement ratio, and the capillary number, which is the ratio of the viscous to elastic forces. We show that diffuse approximation efficiently estimates the unknown mechanical resistance of the capsule membrane. We validate the data-driven procedure by applying it to the geometric and mechanical characterization of ovalbumin microcapsules (diameter of the order of a few tens of microns). As soon as the capsule is sufficiently deformed to exhibit a parachute shape at the rear, the capsule size and surface shear modulus are determined with an accuracy of 0.2% and 2.7%, respectively, as compared with 2–3% and 25% without it, in the best cases (Hu et al. Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: Effects of the membrane constitutive law. Phys Rev E 2013; 87(6): 063008). Diffuse approximation thus allows the capsule size and membrane elastic resistance to be provided quasi-instantly with very high precision. This opens interesting perspectives for industrial applications that require tight control of the capsule mechanical properties in order to secure their behavior when they transport active material.


Sign in / Sign up

Export Citation Format

Share Document