scholarly journals Multiple species drive flexible lake food webs with warming

2018 ◽  
Author(s):  
Timothy J. Bartley ◽  
Tyler D. Tunney ◽  
Nigel P. Lester ◽  
Brian J. Shuter ◽  
Robert H. Hanner ◽  
...  

AbstractClimate change is rewiring the food webs that determine the fate of diverse ecosystems. Mobile generalist consumers are responding to climate change by rapidly shifting their behaviour and foraging, driving food webs to flex. Although these responsive generalists form a key stabilizing module in food web structure, the extent to which they are present throughout whole food webs is largely unknown. Here, we show that multiple species comprising key trophic roles drive flexible lake food webs with warming. By examining lakes that span a 7°C air temperature gradient, we found significant reductions in nearshore derived carbon and nearshore habitat use with increased temperature in three of four fish species. We also found evidence that the response of lake trout to increased temperatures may reduce their biomass and cascade to release their preferred prey, the pelagic forage fish cisco. Our results suggest that climate warming will shift lake food webs toward increased reliance on offshore habitats and resources. We argue that species across trophic levels broadly couple lake macrohabitats, suggesting that potentially stabilizing responsive consumers are present throughout food webs. However, climate change appears to limit their ability to responsively forage, critically undermining a repeated stabilizing mechanism in food webs.


2020 ◽  
Vol 42 (4) ◽  
pp. 411-424
Author(s):  
Kriste Makareviciute-Fichtner ◽  
Birte Matthiessen ◽  
Heike K Lotze ◽  
Ulrich Sommer

Abstract Many coastal oceans experience not only increased loads of nutrients but also changes in the stoichiometry of nutrient supply. Excess supply of nitrogen and stable or decreased supply of silicon lower silicon to nitrogen (Si:N) ratios, which may decrease diatom proportion in phytoplankton. To examine how Si:N ratios affect plankton community composition and food web structure, we performed a mesocosm experiment where we manipulated Si:N ratios and copepod abundance in a Baltic Sea plankton community. In high Si:N treatments, diatoms dominated. Some of them were likely spared from grazing unexpectedly resulting in higher diatom biomass under high copepod grazing. With declining Si:N ratios, dinoflagellates became more abundant under low and picoplankton under high copepod grazing. This altered plankton food web structure: under high Si:N ratios, edible diatoms were directly accessible food for copepods, while under low Si:N ratios, microzooplankton and phago-mixotrophs (mixoplankton) were a more important food source for mesograzers. The response of copepods to changes in the phytoplankton community was complex and copepod density-dependent. We suggest that declining Si:N ratios favor microzoo- and mixoplankton leading to increased complexity of planktonic food webs. Consequences on higher trophic levels will, however, likely be moderated by edibility, nutritional value or toxicity of dominant phytoplankton species.



2011 ◽  
Vol 57 (3) ◽  
pp. 226-235 ◽  
Author(s):  
Vincent E.J. Jassey ◽  
Daniel Gilbert ◽  
Philippe Binet ◽  
Marie-Laure Toussaint ◽  
Geneviève Chiapusio

Microbial communities living in Sphagnum are known to constitute early indicators of ecosystem disturbances, but little is known about their response (including their trophic relationships) to climate change. A microcosm experiment was designed to test the effects of a temperature gradient (15, 20, and 25 °C) on microbial communities including different trophic groups (primary producers, decomposers, and unicellular predators) in Sphagnum segments (0–3 cm and 3–6 cm of the capitulum). Relationships between microbial communities and abiotic factors (pH, conductivity, temperature, and polyphenols) were also studied. The density and the biomass of testate amoebae in Sphagnum upper segments increased and their community structure changed in heated treatments. The biomass of testate amoebae was linked to the biomass of bacteria and to the total biomass of other groups added and, thus, suggests that indirect effects on the food web structure occurred. Redundancy analysis revealed that microbial assemblages differed strongly in Sphagnum upper segments along a temperature gradient in relation to abiotic factors. The sensitivity of these assemblages made them interesting indicators of climate change. Phenolic compounds represented an important explicative factor in microbial assemblages and outlined the potential direct and (or) indirect effects of phenolics on microbial communities.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pianpian Wu ◽  
Martin J. Kainz ◽  
Fernando Valdés ◽  
Siwen Zheng ◽  
Katharina Winter ◽  
...  

AbstractClimate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.



2009 ◽  
Vol 364 (1524) ◽  
pp. 1789-1801 ◽  
Author(s):  
Kevin Shear McCann ◽  
Neil Rooney

Here, we synthesize a number of recent empirical and theoretical papers to argue that food-web dynamics are characterized by high amounts of spatial and temporal variability and that organisms respond predictably, via behaviour, to these changing conditions. Such behavioural responses on the landscape drive a highly adaptive food-web structure in space and time. Empirical evidence suggests that underlying attributes of food webs are potentially scale-invariant such that food webs are characterized by hump-shaped trophic structures with fast and slow pathways that repeat at different resolutions within the food web. We place these empirical patterns within the context of recent food-web theory to show that adaptable food-web structure confers stability to an assemblage of interacting organisms in a variable world. Finally, we show that recent food-web analyses agree with two of the major predictions of this theory. We argue that the next major frontier in food-web theory and applied food-web ecology must consider the influence of variability on food-web structure.



Genome ◽  
2016 ◽  
Vol 59 (9) ◽  
pp. 603-628 ◽  
Author(s):  
Tomas Roslin ◽  
Sanna Majaneva

By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems—revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal.



2015 ◽  
Author(s):  
Abigail Z. Jacobs ◽  
Jennifer A. Dunne ◽  
Cristopher Moore ◽  
Aaron Clauset

Food webs represent the set of consumer-resource interactions among a set of species that co-occur in a habitat, but most food web studies have omitted parasites and their interactions. Recent studies have provided conflicting evidence on whether including parasites changes food web structure, with some suggesting that parasitic interactions are structurally distinct from those among free-living species while others claim the opposite. Here, we describe a principled method for understanding food web structure that combines an efficient optimization algorithm from statistical physics called parallel tempering with a probabilistic generalization of the empirically well-supported food web niche model. This generative model approach allows us to rigorously estimate the degree to which interactions that involve parasites are statistically distinguishable from interactions among free-living species, whether parasite niches behave similarly to free-living niches, and the degree to which existing hypotheses about food web structure are naturally recovered. We apply this method to the well-studied Flensburg Fjord food web and show that while predation on parasites, concomitant predation of parasites, and parasitic intraguild trophic interactions are largely indistinguishable from free-living predation interactions, parasite-host interactions are different. These results provide a powerful new tool for evaluating the impact of classes of species and interactions on food web structure to shed new light on the roles of parasites in food webs.



2021 ◽  
Author(s):  
Emanuela Fanelli ◽  
Samuele Menicucci ◽  
Sara Malavolti ◽  
Andrea De Felice ◽  
Iole Leonori

Abstract. Zooplankton are critical to the functioning of ocean food webs because of their utter abundance and vital ecosystem roles. Zooplankton communities are highly diverse and thus perform a variety of ecosystem functions, thus changes in their community or food web structure may provide evidence of ecosystem alteration. Assemblage structure and trophodynamics of mesozooplantkon communities were examined across the Adriatic basin, the northernmost and most productive basin of the Mediterranean Sea. Samples were collected in June–July 2019 along coast-offshore transects covering the whole western Adriatic side, consistently environmental variables were also recorded. Results showed a clear separation between samples from the northern-central Adriatic and the southern ones, with a further segregation, although less clear, of inshore vs. off-shore stations, the latter mostly dominated in the central and southern stations by gelatinous plankton. Such patterns were mainly driven by chlorophyll-a concentration (as a proxy of primary production) for northern-central stations, i.e. closer to the Po river input, and by temperature and salinity, for southern ones, with the DistLM model explaining 46 % of total variance. The analysis of stable isotopes of nitrogen and carbon allowed to identify a complex food web characterized by 3 trophic levels from herbivores to carnivores, passing through the mixed feeding behavior of omnivores, shifting from phytoplankton/detritus ingestion to microzooplankton. Trophic structure also spatially varied according to sub-area, with the northern-central sub-areas differing from each other and from the southern stations. Our results highlighted the importance of environmental variables as drivers of zooplanktonic communities and the complex structure of their food webs. Disentangling and considering such complexity is crucial to generate realistic predictions on the functioning of aquatic ecosystems, especially in high productive and, at the same time, overexploited area such as the Adriatic Sea.



2015 ◽  
Vol 282 (1819) ◽  
pp. 20151589 ◽  
Author(s):  
Alyssa R. Cirtwill ◽  
Daniel B. Stouffer ◽  
Tamara N. Romanuk

Several properties of food webs—the networks of feeding links between species—are known to vary systematically with the species richness of the underlying community. Under the ‘latitude–niche breadth hypothesis’, which predicts that species in the tropics will tend to evolve narrower niches, one might expect that these scaling relationships could also be affected by latitude. To test this hypothesis, we analysed the scaling relationships between species richness and average generality, vulnerability and links per species across a set of 196 empirical food webs. In estuarine, marine and terrestrial food webs there was no effect of latitude on any scaling relationship, suggesting constant niche breadth in these habitats. In freshwater communities, on the other hand, there were strong effects of latitude on scaling relationships, supporting the latitude–niche breadth hypothesis. These contrasting findings indicate that it may be more important to account for habitat than latitude when exploring gradients in food-web structure.



Food Webs ◽  
2019 ◽  
Vol 21 ◽  
pp. e00123 ◽  
Author(s):  
Sarah M. Laske ◽  
Amanda E. Rosenberger ◽  
Mark S. Wipfli ◽  
Christian E. Zimmerman


Author(s):  
Robert M. Pringle ◽  
Matthew C. Hutchinson

Food webs are a major focus and organizing theme of ecology, but the data used to assemble them are deficient. Early debates over food-web data focused on taxonomic resolution and completeness, lack of which had produced spurious inferences. Recent data are widely believed to be much better and are used extensively in theoretical and meta-analytic research on network ecology. Confidence in these data rests on the assumptions ( a) that empiricists correctly identified consumers and their foods and ( b) that sampling methods were adequate to detect a near-comprehensive fraction of the trophic interactions between species. Abundant evidence indicates that these assumptions are often invalid, suggesting that most topological food-web data may remain unreliable for inferences about network structure and underlying ecological and evolutionary processes. Morphologically cryptic species are ubiquitous across taxa and regions, and many trophic interactions routinely evade detection by conventional methods. Molecular methods have diagnosed the severity of these problems and are a necessary part of the cure.



Sign in / Sign up

Export Citation Format

Share Document