scholarly journals Genome-wide Association Study of Multisite Chronic Pain in UK Biobank

2018 ◽  
Author(s):  
Keira J.A. Johnston ◽  
Mark J. Adams ◽  
Barbara I. Nicholl ◽  
Joey Ward ◽  
Rona J Strawbridge ◽  
...  

AbstractChronic pain is highly prevalent worldwide, contributing a significant socioeconomic and public health burden. Several aspects of chronic pain, for example back pain and a severity-related phenotype, chronic pain grade, have been shown to be complex, heritable traits with a polygenic component. Additional pain-related phenotypes capturing aspects of an individual’s overall sensitivity to experiencing and reporting chronic pain have also been suggested. We have here made use of a measure of the number of sites of chronic pain in individuals within the general UK population. This measure, termed Multisite Chronic Pain (MCP), is also a complex trait, but its genetic architecture has not previously been investigated. To address this, a large-scale genome-wide association study (GWAS) of MCP was carried out in ~380,000 UK Biobank participants to identify associated genetic variants. Findings were consistent with MCP having a significant polygenic component with a SNP heritability of 10.2%, and 76 independent lead single nucleotide polymorphisms (SNPs) at 39 risk loci were identified. Additional gene-level association analyses identified neurogenesis, synaptic plasticity, nervous system development, cell-cycle progression and apoptosis genes as being enriched for genetic association with MCP. Genetic correlations were observed between MCP and a range of psychiatric, autoimmune and anthropometric traits including major depressive disorder (MDD), asthma and BMI. Furthermore, in Mendelian randomisation (MR) analyses a bi-directional causal relationship was observed between MCP and MDD. A polygenic risk score (PRS) for MCP was found to significantly predict chronic widespread pain (pain all over the body), indicating the existence of genetic variants contributing to both of these pain phenotypes. These findings support the proposition that chronic pain involves a strong nervous system component and have implications for our understanding of the physiology of chronic pain and for the development of novel treatment strategies.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009428
Author(s):  
Keira J. A. Johnston ◽  
Joey Ward ◽  
Pradipta R. Ray ◽  
Mark J. Adams ◽  
Andrew M. McIntosh ◽  
...  

Chronic pain is highly prevalent worldwide and imparts a significant socioeconomic and public health burden. Factors influencing susceptibility to, and mechanisms of, chronic pain development, are not fully understood, but sex is thought to play a significant role, and chronic pain is more prevalent in women than in men. To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype, in UK Biobank on 178,556 men and 209,093 women, as well as investigating sex-specific genetic correlations with a range of psychiatric, autoimmune and anthropometric phenotypes and the relationship between sex-specific polygenic risk scores for MCP and chronic widespread pain. We also assessed whether MCP-associated genes showed expression pattern enrichment across tissues. A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS outputs revealed a further 87 independent associated SNPs. Gene-level analyses revealed sex-specific MCP associations, with 31 genes significantly associated in females, 37 genes associated in males, and a single gene, DCC, associated in both sexes. We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at an rg of significantly less than 1 (0.92). All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the dorsal root ganglion, and there was a degree of enrichment for expression in sex-specific tissues. Overall, the findings indicate that sex differences in chronic pain exist at the SNP, gene and transcript abundance level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong central nervous-system component to chronic pain in both sexes, additionally highlighting a potential role for the DRG and nociception.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. e1008164 ◽  
Author(s):  
Keira J. A. Johnston ◽  
Mark J. Adams ◽  
Barbara I. Nicholl ◽  
Joey Ward ◽  
Rona J. Strawbridge ◽  
...  

2020 ◽  
Vol 29 (8) ◽  
pp. 1396-1404 ◽  
Author(s):  
Weihua Meng ◽  
Brian W Chan ◽  
Cameron Harris ◽  
Maxim B Freidin ◽  
Harry L Hebert ◽  
...  

Abstract Background Common types of musculoskeletal conditions include pain in the neck and shoulder areas. This study seeks to identify the genetic variants associated with neck or shoulder pain based on a genome-wide association approach using 203 309 subjects from the UK Biobank cohort and look for replication evidence from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and TwinsUK. Methods A genome-wide association study was performed adjusting for age, sex, BMI and nine population principal components. Significant and independent genetic variants were then sent to GS:SFHS and TwinsUK for replication. Results We identified three genetic loci that were associated with neck or shoulder pain in the UK Biobank samples. The most significant locus was in an intergenic region in chromosome 17, rs12453010, having P = 1.66 × 10−11. The second most significant locus was located in the FOXP2 gene in chromosome 7 with P = 2.38 × 10−10 for rs34291892. The third locus was located in the LINC01572 gene in chromosome 16 with P = 4.50 × 10−8 for rs62053992. In the replication stage, among four significant and independent genetic variants, rs2049604 in the FOXP2 gene and rs62053992 in the LINC01572 gene were weakly replicated in GS:SFHS (P = 0.0240 and P = 0.0202, respectively). Conclusions We have identified three loci associated with neck or shoulder pain in the UK Biobank cohort, two of which were weakly supported in a replication cohort. Further evidence is needed to confirm their roles in neck or shoulder pain.


2020 ◽  
Author(s):  
Keira JA Johnston ◽  
Joey Ward ◽  
Pradipta R Ray ◽  
Mark J Adams ◽  
Andrew M McIntosh ◽  
...  

AbstractChronic pain is highly prevalent worldwide and imparts significant socioeconomic and public health burden and is more prevalent in women than in men. Factors that influence susceptibility and mechanisms of chronic pain development, are not fully understood.To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype in UK Biobank. Genetic correlations between MCP in each sex and a range of psychiatric, autoimmune, and anthropometric phenotypes were examined. The relationship between female and male MCP, and chronic widespread pain was investigated using polygenic risk scoring. Expression of sex-specific MCP-associated loci in a range of tissues was examined using GTEx, and separately in neural and non-neural human tissues with assessment for dorsal-root ganglion (DRG) enrichment. For genes enriched for neural-tissue expression the full GTEx database was queried for sex-differential gene expression in CNS regions, and for high expression in sex-specific tissues. Expression in neural mouse tissue was also examined for orthologs of these genes.A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS output found 87 independent SNPs to be significantly associated with MCP. We found sex-specific MCP-associated genes, with 31 genes and 37 genes associated with female and male MCP respectively and one gene associated with MCP in both sexes (DCC).We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at rg significantly less than 1. All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the DRG, and many showed elevated expression in sex-specific tissues.Overall, findings indicate sex differences in chronic pain at the SNP, gene and transcriptomic level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong nervous-system component to chronic pain in both sexes, emphasise the importance of the DRG, and indicate specific loci which may play a specialised role in nociception.


2019 ◽  
Vol 110 (2) ◽  
pp. 473-484 ◽  
Author(s):  
Hassan S Dashti ◽  
Jordi Merino ◽  
Jacqueline M Lane ◽  
Yanwei Song ◽  
Caren E Smith ◽  
...  

ABSTRACT Background Little is known about the contribution of genetic variation to food timing, and breakfast has been determined to exhibit the most heritable meal timing. As breakfast timing and skipping are not routinely measured in large cohort studies, alternative approaches include analyses of correlated traits. Objectives The aim of this study was to elucidate breakfast skipping genetic variants through a proxy-phenotype genome-wide association study (GWAS) for breakfast cereal skipping, a commonly assessed correlated trait. Methods We leveraged the statistical power of the UK Biobank (n = 193,860) to identify genetic variants related to breakfast cereal skipping as a proxy-phenotype for breakfast skipping and applied several in silico approaches to investigate mechanistic functions and links to traits/diseases. Next, we attempted validation of our approach in smaller breakfast skipping GWAS from the TwinUK (n = 2,006) and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium (n = 11,963). Results In the UK Biobank, we identified 6 independent GWAS variants, including those implicated for caffeine (ARID3B/CYP1A1), carbohydrate metabolism (FGF21), schizophrenia (ZNF804A), and encoding enzymes important for N6-methyladenosine RNA transmethylation (METTL4, YWHAB, and YTHDF3), which regulates the pace of the circadian clock. Expression of identified genes was enriched in the cerebellum. Genome-wide correlation analyses indicated positive correlations with anthropometric traits. Through Mendelian randomization (MR), we observed causal links between genetically determined breakfast skipping and higher body mass index, more depressive symptoms, and smoking. In bidirectional MR, we demonstrated a causal link between being an evening person and skipping breakfast, but not vice versa. We observed association of our signals in an independent breakfast skipping GWAS in another British cohort (P = 0.032), TwinUK, but not in a meta-analysis of non-British cohorts from the CHARGE consortium (P = 0.095). Conclusions Our proxy-phenotype GWAS identified 6 genetic variants for breakfast skipping, linking clock regulation with food timing and suggesting a possible beneficial role of regular breakfast intake as part of a healthy lifestyle.


2020 ◽  
Author(s):  
Weihua Meng ◽  
Brian W Chan ◽  
Cameron Harris ◽  
Maxim B Freidin ◽  
Harry L Hebert ◽  
...  

ABSTRACTBackgroundCommon types of musculoskeletal conditions include pain in the neck and shoulder areas. This study seeks to identify the genetic variants associated with neck or shoulder pain based on a genome-wide association approach using 203,309 subjects from the UK Biobank cohort and look for replication evidence from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and TwinsUK.MethodsCases in the UK Biobank were determined by a question which asked the participants if they had experienced pain in the neck or shoulder in the previous month influencing daily activities. Controls were the UK Biobank participants who reported no pain anywhere in the last month. A genome-wide association study was performed adjusting for age, sex, BMI and 9 population principal components. Significant and independent genetic variants were then sent to GS:SFHS and TwinsUK for replication.ResultsWe identified 3 genetic loci that were associated with neck or shoulder pain in the UK Biobank samples. The most significant locus was in an intergenic region in chromosome 17, rs12453010, having P = 1.66 × 10-11. The second most significant locus was located in the FOXP2 gene in chromosome 7 with P = 2.38 × 10-10 for rs34291892. The third locus was located in the LINC01572 gene in chromosome 16 with P = 4.50 × 10-8 for rs62053992. In the replication stage, among 4 significant and independent genetic variants, rs2049604 in the FOXP2 gene and rs62053992 in the LINC01572 gene were weakly replicated in GS:SFHS (P = 0.0240 and P = 0.0202, respectively). None of the single nucleotide polymorphisms (SNPs) were replicated in the TwinsUK cohort (P > 0.05).ConclusionsWe have identified 3 loci associated with neck or shoulder pain in the UK Biobank cohort, two of which were weakly supported in a replication cohort. Further evidence is needed to confirm their roles in neck or shoulder pain.SignificanceThis is the first genome-wide association study on neck or shoulder pain. We have identified 3 genetic loci (an intergenic region in chromosome 17, the FOXP2 gene in chromosome 7, and the LINC01572 gene in chromosome 16) that are associated with neck or shoulder pain using the UK Biobank cohort, among which the FOXP2 gene and the LINC01572 gene were weakly replicated by the Generation Scotland: Scottish Family Health Study (P < 0.05). The SNP heritability was 0.11, indicating neck or shoulder pain is a heritable trait. The tissue expression analysis suggested that neck or shoulder pain was related to multiple brain tissues, indicating the involvement of neuron function. The results will inform further research in the characterisation of the mechanisms of neck or shoulder pain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helena R. R. Wells ◽  
Fatin N. Zainul Abidin ◽  
Maxim B. Freidin ◽  
Frances M. K. Williams ◽  
Sally J. Dawson

AbstractTinnitus is a prevalent condition in which perception of sound occurs without an external stimulus. It is often associated with pre-existing hearing loss or noise-induced damage to the auditory system. In some individuals it occurs frequently or even continuously and leads to considerable distress and difficulty sleeping. There is little knowledge of the molecular mechanisms involved in tinnitus which has hindered the development of treatments. Evidence suggests that tinnitus has a heritable component although previous genetic studies have not established specific risk factors. From a total of 172,608 UK Biobank participants who answered questions on tinnitus we performed a case–control genome-wide association study for self-reported tinnitus. Final sample size used in association analysis was N = 91,424. Three variants in close proximity to the RCOR1 gene reached genome wide significance: rs4906228 (p = 1.7E−08), rs4900545 (p = 1.8E−08) and 14:103042287_CT_C (p = 3.50E−08). RCOR1 encodes REST Corepressor 1, a component of a co-repressor complex involved in repressing neuronal gene expression in non-neuronal cells. Eleven other independent genetic loci reached a suggestive significance threshold of p < 1E−06.


Sign in / Sign up

Export Citation Format

Share Document