scholarly journals FOURIER RING CORRELATION SIMPLIFIES IMAGE RESTORATION IN FLUORESCENCE MICROSCOPY

2019 ◽  
Author(s):  
Sami Koho ◽  
Giorgio Tortarolo ◽  
Marco Castello ◽  
Takahiro Deguchi ◽  
Alberto Diaspro ◽  
...  

AbstractFourier ring correlation (FRC) has recently gained some popularity among (super-resolution) fluorescence microscopists as a straightforward and objective method to measure the effective resolution of a microscopy image. While the knowledge of the numeric resolution value is helpful in e.g. interpreting imaging results, much more practical use can be made of FRC analysis – in this article we propose novel blind image restoration methods enabled by it. We apply FRC to perform image de-noising by frequency domain filtering. We propose novel blind linear and non-linear image deconvolution methods that use FRC to estimate the effective point-spread-function, directly from the images, with no need for prior knowledge of the instrument or sample characteristics. The deconvolution is shown to work exquisitely with both two- and three-dimensional images. We also show how FRC can be used as a powerful metric to observe the progress of iterative deconvolution. While developing the image restoration methods, we also addressed two important limitations in FRC that are of more general interest: how to make FRC work with single images and with three-dimensional images with anisotropic resolution.

1990 ◽  
Vol 157 (1) ◽  
pp. 3-20 ◽  
Author(s):  
M. Bertero ◽  
P. Boccacci ◽  
G. J. Brakenhoff ◽  
F. Malfanti ◽  
H. T. M. Voort

1998 ◽  
Vol 84 (8) ◽  
pp. 4033-4042 ◽  
Author(s):  
M. Schrader ◽  
S. W. Hell ◽  
H. T. M. van der Voort

Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document