scholarly journals Global Signal Regression Strengthens Association between Resting-State Functional Connectivity and Behavior

2019 ◽  
Author(s):  
Jingwei Li ◽  
Ru Kong ◽  
Raphael Liegeois ◽  
Csaba Orban ◽  
Yanrui Tan ◽  
...  

AbstractGlobal signal regression (GSR) is one of the most debated preprocessing strategies for resting-state functional MRI. GSR effectively removes global artifacts driven by motion and respiration, but also discards globally distributed neural information and introduces negative correlations between certain brain regions. The vast majority of previous studies have focused on the effectiveness of GSR in removing imaging artifacts, as well as its potential biases. Given the growing interest in functional connectivity fingerprinting, here we considered the utilitarian question of whether GSR strengthens or weakens associations between resting-state functional connectivity (RSFC) and multiple behavioral measures across cognition, personality and emotion.By applying the variance component model to the Brain Genomics Superstruct Project (GSP), we found that behavioral variance explained by whole-brain RSFC increased by an average of 47% across 23 behavioral measures after GSR. In the Human Connectome Project (HCP), we found that behavioral variance explained by whole-brain RSFC increased by an average of 40% across 58 behavioral measures, when GSR was applied after ICA-FIX de-noising. To ensure generalizability, we repeated our analyses using kernel regression. GSR improved behavioral prediction accuracies by an average of 64% and 12% in the GSP and HCP datasets respectively. Importantly, the results were consistent across methods. A behavioral measure with greater RSFC-explained variance (using the variance component model) also exhibited greater prediction accuracy (using kernel regression). A behavioral measure with greater improvement in behavioral variance explained after GSR (using the variance component model) also enjoyed greater improvement in prediction accuracy after GSR (using kernel regression). Furthermore, GSR appeared to benefit task performance measures more than self-reported measures.Since GSR was more effective at removing motion-related and respiratory-related artifacts, GSR-related increases in variance explained and prediction accuracies were unlikely the result of motion-related or respiratory-related artifacts. However, it is worth emphasizing that the current study focused on whole-brain RSFC, so it remains unclear whether GSR improves RSFC-behavioral associations for specific connections or networks. Overall, our results suggest that at least in the case for young healthy adults, GSR strengthens the associations between RSFC and most (although not all) behavioral measures. Code for the variance component model and ridge regression can be found here: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/Li2019_GSR.HighlightsGlobal signal regression improves RSFC-behavior associationsGlobal signal regression improves RSFC-based behavioral prediction accuraciesImprovements replicated across two large-scale datasets and methodsTask-performance measures enjoyed greater improvements than self-reported onesGSR beneficial even after ICA-FIX


2011 ◽  
Vol 1 (3) ◽  
pp. 280-285 ◽  
Author(s):  
Lars Sjöberg

On the Best Quadratic Minimum Bias Non-Negative Estimator of a Two-Variance Component ModelVariance components (VCs) in linear adjustment models are usually successfully computed by unbiased estimators. However, for many unbiased VC techniques estimated variance components might be negative, a result that cannot be tolerated by the user. This is, for example, the case with the simple additive VC model aσ2/1 + bσ2/2 with known coefficients a and b, where either of the unbiasedly estimated variance components σ2/1 + σ2/2 may frequently come out negative. This fact calls for so-called non-negative VC estimators. Here the Best Quadratic Minimum Bias Non-negative Estimator (BQMBNE) of a two-variance component model is derived. A special case with independent observations is explicitly presented.



2019 ◽  
Author(s):  
Hannes Almgren ◽  
Frederik Van de Steen ◽  
Adeel Razi ◽  
Karl Friston ◽  
Daniele Marinazzo

AbstractThe influence of the global BOLD signal on resting state functional connectivity in fMRI data remains a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression (GSR) on effective connectivity within and between resting-state networks – as estimated with dynamic causal modelling (DCM) for resting state fMRI (rsfMRI). DCM incorporates a forward (generative) model that quantifies the contribution of different types of noise (including global measurement noise), effective connectivity, and (neuro)vascular processes to functional connectivity measurements. DCM analyses were applied to two different designs; namely, longitudinal and cross-sectional designs. In the modelling of longitudinal designs, we included four extensive longitudinal resting state fMRI datasets with a total number of 20 subjects. In the analysis of cross-sectional designs, we used rsfMRI data from 361 subjects from the Human Connectome Project. We hypothesized that (1) GSR would have no discernible impact on effective connectivity estimated with DCM, and (2) GSR would be reflected in the parameters representing global measurement noise. Additionally, we performed comparative analyses of the informative value of data with and without GSR. Our results showed negligible to small effects of GSR on connectivity within small (separately estimated) RSNs. For between-network connectivity, we found two important effects: the effect of GSR on between-network connectivity (averaged over all connections) was negligible to small, while the effect of GSR on individual connections was non-negligible. Contrary to our expectations, we found either no effect (in the longitudinal designs) or a non-specific (cross-sectional design) effect of GSR on parameters representing (global) measurement noise. Data without GSR were found to be more informative than data with GSR; however, in small resting state networks the precision of posterior estimates was greater using data after GSR. In conclusion, GSR is a minor concern in DCM studies; however, individual between-network connections (as opposed to average between-network connectivity) and noise parameters should be interpreted quantitatively with some caution. The Kullback-Leibler divergence of the posterior from the prior, together with the precision of posterior estimates, might offer a useful measure to assess the appropriateness of GSR, when nuancing data features in resting state fMRI.



2020 ◽  
Author(s):  
Giovanni Rabuffo ◽  
Jan Fousek ◽  
Christophe Bernard ◽  
Viktor Jirsa

AbstractAt rest, mammalian brains display a rich complex spatiotemporal behavior, which is reminiscent of healthy brain function and has provided nuanced understandings of several major neurological conditions. Despite the increasingly detailed phenomenological documentation of the brain’s resting state, its principle underlying causes remain unknown. To establish causality, we link structurally defined features of a brain network model to neural activation patterns and their variability. For the mouse, we use a detailed connectome-based model and simulate the resting state dynamics for neural sources and whole brain imaging signals (Blood-Oxygen-Level-Dependent (BOLD), Electroencephalography (EEG)). Under conditions of near-criticality, characteristic neuronal cascades form spontaneously and propagate through the network. The largest neuronal cascades produce short-lived but robust co-fluctuations at pairs of regions across the brain. During these co-activation episodes, long-lasting functional networks emerge giving rise to epochs of stable resting state networks correlated in time. Sets of neural cascades are typical for a resting state network, but different across. We experimentally confirm the existence and stability of functional connectivity epochs comprising BOLD co-activation bursts in mice (N=19). We further demonstrate the leading role of the neuronal cascades in a simultaneous EEG/fMRI data set in humans (N=15), explaining a large part of the variability of functional connectivity dynamics. We conclude that short-lived neuronal cascades are a major robust dynamic component contributing to the organization of the slowly evolving spontaneous fluctuations in brain dynamics at rest.



2016 ◽  
Vol 6 (6) ◽  
pp. 435-447 ◽  
Author(s):  
Garth J. Thompson ◽  
Valentin Riedl ◽  
Timo Grimmer ◽  
Alexander Drzezga ◽  
Peter Herman ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document