scholarly journals Ion Condensation onto Ribozyme is Site-Specific and Fold-Dependent

2019 ◽  
Author(s):  
Naoto Hori ◽  
Natalia A. Denesyuk ◽  
D. Thirumalai

AbstractThe highly charged RNA molecules, with each phosphate carrying a single negative charge, cannot fold into well-defined architectures with tertiary interactions, in the absence of ions. For ribozymes, divalent cations are known to be more efficient than monovalent ions in driving them to a compact state although often Mg2+ ions are needed for catalytic activity. Therefore, how ions interact with RNA is relevant in understanding RNA folding. It is often thought that the most of the ions are territorially and non-specifically bound to the RNA, as predicted by the counterion condensation (CIC) theory. Here, we show using simulations of Azoarcus ribozyme, based on an accurate coarse-grained Three Site Interaction (TIS) model, with explicit divalent and monovalent cations, that ion condensation is highly specific and depends on the nucleotide position. The regions with high coordination between the phosphate groups and the divalent cations are discernible at very low concentrations when the ribozyme does not form tertiary interactions. Surprisingly, these regions also contain the secondary structural elements that nucleate subsequently in the self-assembly of RNA, implying that ion condensation is determined by the architecture of the folded state. These results are in sharp contrast to interactions of ions (monovalent and divalent) with rigid charged rods in which ion condensation is uniform and position independent. The differences are explained in terms of the dramatic non-monotonic shape fluctuations in the ribozyme as it folds with increasing Mg2+ or Ca2+ concentration.

2019 ◽  
Author(s):  
Hung T. Nguyen ◽  
Naoto Hori ◽  
D. Thirumalai

RNA molecules cannot fold in the absence of counter ions. Experiments are typically performed in the presence of monovalent and divalent cations. How to treat the impact of a solution containing a mixture of both ion types on RNA folding has remained a challenging problem for decades. By exploiting the large concentration difference between divalent and monovalent ions used in experiments, we develop a theory based on the Reference Interaction Site Model (RISM), which allows us to treat divalent cations explicitly while keeping the implicit screening effect due to monovalent ions. Our theory captures both the inner shell and outer shell coordination of divalent cations to phosphate groups, which we demonstrate is crucial in an accurate calculation of RNA folding thermodynamics. The RISM theory for ion-phosphate interactions when combined with simulations based on a transferable coarse-grained model allows us to accurately predict the folding of several RNA molecules in a mixture containing monovalent and divalent ions. The calculated folding free energies and ion-preferential coefficients for RNA molecules (pseudoknots, a fragment of the ribosomal RNA, and the aptamer domain of the adenine riboswitch) are in excellent agreement with experiments over a wide range of monovalent and divalent ion concentrations. Because the theory is general, it can be readily used to investigate ion and sequence effects on DNA properties.Significance StatementRNA molecules require ions to fold. The problem of how ions of differing sizes and valences drive the folding of RNA molecules is unsolved. Here, we take a major step in its solution by creating a method, based on the theory of polyatomic liquids, to calculate the potential between divalent ions and the phosphate groups. The resulting model, accounting for inner and outer sphere coordination of Mg2+ and Ca2+ to phosphates, when used in coarse-grained molecular simulations predicts folding free energies for a number of RNA molecules in the presence of both divalent and monovalent ions that are in excellent agreement with experiments. The work sets the stage for probing sequence and ion effects on DNA and synthetic polyelectrolytes.


2019 ◽  
Vol 116 (42) ◽  
pp. 21022-21030 ◽  
Author(s):  
Hung T. Nguyen ◽  
Naoto Hori ◽  
D. Thirumalai

RNA molecules cannot fold in the absence of counterions. Experiments are typically performed in the presence of monovalent and divalent cations. How to treat the impact of a solution containing a mixture of both ion types on RNA folding has remained a challenging problem for decades. By exploiting the large concentration difference between divalent and monovalent ions used in experiments, we develop a theory based on the reference interaction site model (RISM), which allows us to treat divalent cations explicitly while keeping the implicit screening effect due to monovalent ions. Our theory captures both the inner shell and outer shell coordination of divalent cations to phosphate groups, which we demonstrate is crucial for an accurate calculation of RNA folding thermodynamics. The RISM theory for ion–phosphate interactions when combined with simulations based on a transferable coarse-grained model allows us to predict accurately the folding of several RNA molecules in a mixture containing monovalent and divalent ions. The calculated folding free energies and ion-preferential coefficients for RNA molecules (pseudoknots, a fragment of the rRNA, and the aptamer domain of the adenine riboswitch) are in excellent agreement with experiments over a wide range of monovalent and divalent ion concentrations. Because the theory is general, it can be readily used to investigate ion and sequence effects on DNA properties.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 76 ◽  
Author(s):  
Jagoba Iturri ◽  
Alberto Moreno-Cencerrado ◽  
José Toca-Herrera

The well-known bacterial S-layer protein SbpA from Lysinibacillus sphaericus CCM2177 induces spontaneous crystal formation via cooperative self-assembly of the protein subunits into an ordered supramolecular structure. Recrystallization occurs in the presence of divalent cations (i.e., Ca2+) and finally leads to producing smooth 2-D crystalline coatings composed of squared (p4) lattice structures. Among the factors interfering in such a process, the rate of protein supply certainly plays an important role since a limited number of accessible proteins might turn detrimental for film completion. Studies so far have mostly focused on high SbpA concentrations provided under stopped-flow or dynamic-flow conditions, thus omitting the possibility of investigating intermediate states, in which dynamic flow is applied for more critical concentrations of SbpA (i.e., 25, 10, and 5 µg/mL). In this work, we have characterized both physico-chemical and topographical aspects of the assembly and recrystallization of SbpA protein in such low concentration conditions by means of in situ Quartz Crystal Microbalance with Dissipation (QCMD) and atomic force microscopy (AFM) measurements, respectively. On the basis of these experiments, we can confirm how the application of a dynamic flow influences the formation of a closed and crystalline protein film from low protein concentrations (i.e., 10 µg/mL), which otherwise would not be formed.


2007 ◽  
Vol 13 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Sergio-Francis M. Zenisek ◽  
Eric J. Hayden ◽  
Niles Lehman

The encapsulation of information-bearing macromolecules inside protocells is a critical step in scenarios for the origins of life on the Earth as well as for the construction of artificial living systems. For these protocells to emulate life, they must be able to transmit genetic information to other cells. We have used a water-in-oil emulsion system to simulate the compartmentalization of catalytic RNA molecules. By exploiting RNA-directed recombination reactions previously developed in our laboratory, including a ribozyme self-assembly pathway, we demonstrate that it is possible for information to be exchanged among protocells. This can happen either indirectly by the passage of divalent cations through the inter-protocellular medium (oil), or by the direct interaction of two or more protocells that allows RNA molecules to be exchanged. The degree of agitation affects the ability of such exchange. The consequences of these results include the implications that prototypical living systems can transmit information among compartments, and that the environment can regulate the extent of this crosstalk.


2018 ◽  
Vol 115 (31) ◽  
pp. E7313-E7322 ◽  
Author(s):  
Jorjethe Roca ◽  
Naoto Hori ◽  
Saroj Baral ◽  
Yogambigai Velmurugu ◽  
Ranjani Narayanan ◽  
...  

The functions of RNA pseudoknots (PKs), which are minimal tertiary structural motifs and an integral part of several ribozymes and ribonucleoprotein complexes, are determined by their structure, stability, and dynamics. Therefore, it is important to elucidate the general principles governing their thermodynamics/folding mechanisms. Here, we combine laser temperature-jump experiments and coarse-grained simulations to determine the folding/unfolding pathways of VPK, a variant of the mouse mammary tumor virus (MMTV) PK involved in ribosomal frameshifting. Fluorescent nucleotide analogs (2-aminopurine and pyrrolocytidine) placed at different stem/loop positions in the PK serve as local probes allowing us to monitor the order of assembly of VPK that has two constituent hairpins with different intrinsic stabilities. We show that at 50 mM KCl, the dominant folding pathway populates only the more stable hairpin intermediate; as the salt concentration is increased, a parallel folding pathway emerges involving the less stable hairpin as an alternate intermediate. Notably, the flux between the pathways is modulated by the ionic strength. Our findings support the principle that the order of PK structure formation is determined by the relative stabilities of the hairpins, which can be altered by sequence variations or salt concentrations. The experimental results of salt effects on the partitioning between the two folding pathways are in remarkable agreement with simulations that were performed with no adjustable parameters. Our study not only unambiguously demonstrates that VPK folds by parallel pathways but also showcases the power of combining experiments and simulations for a more enriched description of RNA self-assembly.


2020 ◽  
Author(s):  
Florencia Klein ◽  
Daniela Cáceres-Rojas ◽  
Monica Carrasco ◽  
Juan Carlos Tapia ◽  
Julio Caballero ◽  
...  

<p>Although molecular dynamics simulations allow for the study of interactions among virtually all biomolecular entities, metal ions still pose significant challenges to achieve an accurate structural and dynamical description of many biological assemblies. This is particularly the case for coarse-grained (CG) models. Although the reduced computational cost of CG methods often makes them the technique of choice for the study of large biomolecular systems, the parameterization of metal ions is still very crude or simply not available for the vast majority of CG- force fields. Here, we show that incorporating statistical data retrieved from the Protein Data Bank (PDB) to set specific Lennard-Jones interactions can produce structurally accurate CG molecular dynamics simulations. Using this simple approach, we provide a set of interaction parameters for Calcium, Magnesium, and Zinc ions, which cover more than 80% of the metal-bound structures reported on the PDB. Simulations performed using the SIRAH force field on several proteins and DNA systems show that using the present approach it is possible to obtain non-bonded interaction parameters that obviate the use of topological constraints. </p>


2005 ◽  
Vol 33 (5) ◽  
pp. 910-912 ◽  
Author(s):  
P.J. Bond ◽  
J. Cuthbertson ◽  
M.S.P. Sansom

Interactions between membrane proteins and detergents are important in biophysical and structural studies and are also biologically relevant in the context of folding and transport. Despite a paucity of high-resolution data on protein–detergent interactions, novel methods and increased computational power enable simulations to provide a means of understanding such interactions in detail. Simulations have been used to compare the effect of lipid or detergent on the structure and dynamics of membrane proteins. Moreover, some of the longest and most complex simulations to date have been used to observe the spontaneous formation of membrane protein–detergent micelles. Common mechanistic steps in the micelle self-assembly process were identified for both α-helical and β-barrel membrane proteins, and a simple kinetic mechanism was proposed. Recently, simplified (i.e. coarse-grained) models have been utilized to follow long timescale transitions in membrane protein–detergent assemblies.


Soft Matter ◽  
2021 ◽  
Author(s):  
Alexander Kantardjiev

We carried out a series of coarse-grained molecular dynamics liposome-copolymer simulations with varying extent of copolymer concentration in an attempt to understand the effect of copolymer structure and concentration on vesicle self-assembly and stability.


Author(s):  
Łukasz Piotr Baran ◽  
Wojciech Rżysko ◽  
Dariusz Tarasewicz

In this study we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of...


1971 ◽  
Vol 17 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Philip J Garry

Abstract Dibucaine, used as a differential inhibitor with acetyl-, propionyl-, and butyrylthiocholine as substrate, clearly identified the "usual" and "atypical" serum cholinesterases. Succinylcholine was also used successfully as a differential inhibitor with butyrylthiocholine as substrate. Sodium fluoride, used as a differential inhibitor, gave conflicting results, depending on whether Tris or phosphate buffer was used in the assay. Mono- and divalent cations (NaCl, KCl, MgCl2, CaCl2, and BaCl2) activated the "usual" and inhibited the "atypical" enzyme at low concentrations. The "usual" enzyme had the same activity in 0.05 mol of Tris or phosphate buffer per liter, while the heterozygous and "atypical" enzymes showed 12 and 42% inhibition, respectively, when assayed in the phosphate buffer. Kinetic studies showed the phosphate acted as a competitive inhibitor of "atypical" enzyme. Km values, determined for "usual" and "atypical" enzymes, were 0.057 and 0.226 mmol/liter, respectively, with butyrylthiocholine as substrate.


Sign in / Sign up

Export Citation Format

Share Document