scholarly journals A novel, dynein-independent mechanism focuses the endoplasmic reticulum around spindle poles in dividing Drosophila spermatocytes

2019 ◽  
Author(s):  
Darya Karabasheva ◽  
Jeremy T. Smyth

AbstractIn dividing animal cells the endoplasmic reticulum (ER) concentrates around the poles of the spindle apparatus by associating with astral microtubules (MTs), and this association is essential for proper ER partitioning to progeny cells. The mechanisms that associate the ER with astral MTs are unknown. Because astral MT minus-ends are anchored by centrosomes at spindle poles, we tested the hypothesis that the MT minus-end motor dynein mediates ER concentration around spindle poles. Live in vivo imaging of Drosophila spermatocytes undergoing the first meiotic division revealed that dynein is required for ER concentration around centrosomes during interphase. In marked contrast, however, dynein suppression had no effect on ER association with astral MTs and concentration around spindle poles in early M-phase. Importantly though, there was a sudden onset of ER-astral MT association in Dhc64C RNAi cells, revealing activation of an M-phase specific mechanism. ER redistribution to spindle poles also did not require non-claret disjunctional (ncd), the other known Drosophila MT minus-end motor, nor Klp61F, a MT plus-end motor that generates spindle poleward forces. Collectively, our results suggest that a novel, M-phase specific mechanism of ER-MT association that is independent of MT minus-end motors is required for proper ER partitioning in dividing cells.

1969 ◽  
Vol 5 (3) ◽  
pp. 745-755
Author(s):  
W. T. JACKSON

Earlier studies on the effects of the herbicide isopropyl N-phenylcarbamate (IPC) on mitosis revealed blocked metaphases, multinucleate cells, giant nuclei and an increase in number of partly contracted chromosomes. It was assumed that IPC, like colchicine, was causing these effects by disruption of the spindle apparatus by destroying the spindle microtubules. The animal hormone melatonin causes an increase in birefringence of the mitotic spindle in animal cells, presumably by increasing the number of microtubules. We have studied the effects of IPC, melatonin, and combinations of the two on mitosis in dividing endosperm cells of the African blood lily (Haemanthus katherinae Baker) in vivo by phase-contrast and polarization microscopy. Both qualitative and quantitative data are presented. Interpretation of these results has been aided materially by a time-lapse cinemicrographic analysis of dividing cells subjected to 1 and 10 p.p.m. IPC (unpublished) and by an accompanying fine-structural analysis of untreated and IPC-treated cells. Mitosis was disrupted by 0.01-10 p.p.m. IPC, the severity of the effect depending on both concentration and stage of mitosis of the cell at the time of treatment. Concentrations of IPC that caused cessation of chromosome movement also caused loss of birefringence of the mitotic spindle. Melatonin increased birefringence of the mitotic spindle in these plant cells and partly nullified the adverse effects of IPC. The results of this study demonstrate that the herbicide IPC, under our conditions, causes disruption of mitosis and loss of birefringence of the spindle. And it has been established that an animal hormone is capable of increasing the birefringence, and presumably the number of microtubules, of the mitotic spindle in dividing endosperm cells of a higher plant. Although melatonin is capable of partly nullifying the effects of IPC, a competitive antagonism is not postulated.


2006 ◽  
Vol 34 (3) ◽  
pp. 356-358 ◽  
Author(s):  
D.P. Sullivan ◽  
H. Ohvo-Rekilä ◽  
N.A. Baumann ◽  
C.T. Beh ◽  
A.K. Menon

We recently showed that transport of ergosterol from the ER (endoplasmic reticulum) to the sterol-enriched PM (plasma membrane) in yeast occurs by a non-vesicular (Sec18p-independent) mechanism that results in the equilibration of sterol pools in the two organelles [Baumann, Sullivan, Ohvo-Rekilä, Simonot, Pottekat, Klaassen, Beh and Menon (2005) Biochemistry 44, 5816–5826]. To explore how this occurs, we tested the role of proteins that might act as sterol transporters. We chose to study oxysterol-binding protein homologues (Osh proteins), a family of seven proteins in yeast, all of which contain a putative sterol-binding pocket. Recent structural analyses of one of the Osh proteins [Im, Raychaudhuri, Prinz and Hurley (2005) Nature (London) 437, 154–158] suggested a possible transport cycle in which Osh proteins could act to equilibrate ER and PM pools of sterol. Our results indicate that the transport of newly synthesized ergosterol from the ER to the PM in an OSH deletion mutant lacking all seven Osh proteins is slowed only 5-fold relative to the isogenic wild-type strain. Our results suggest that the Osh proteins are not sterol transporters themselves, but affect sterol transport in vivo indirectly by affecting the ability of the PM to sequester sterols.


2005 ◽  
Vol 86 (5) ◽  
pp. 1363-1368 ◽  
Author(s):  
Yuri Y. Kusov ◽  
Rainer Gosert ◽  
Verena Gauss-Müller

The precise role of the poly(A) tail at the 3′ end of the picornavirus RNA genome and the cellular factors that control its homeostasis are unknown. To assess the importance of the poly(A) tail for virus replication, the genome of the slowly replicating hepatitis A virus (HAV) with and without a poly(A) tail was studied after transfection into cells maintained under various conditions. A tailless HAV genome had a shorter half-life than a poly(A)-containing genome and was unable to replicate in quiescent cells. In dividing cells, the tailless RNA gave rise to infectious virus with a restored poly(A) tail of up to 60 residues. Cells arrested at the G0 and the G2/M phase produced lower amounts of infectious HAV than cells in the G1 phase. These data suggest that the 3′ poly(A) tail of HAV can be restored with the help of a cellular and/or viral function that is regulated during the cell cycle.


2003 ◽  
Vol 23 (20) ◽  
pp. 7271-7284 ◽  
Author(s):  
Jost Enninga ◽  
Agata Levay ◽  
Beatriz M. A. Fontoura

ABSTRACT Sec13 is a constituent of the endoplasmic reticulum and the nuclear pore complex (NPC). At the endoplasmic reticulum, Sec13 is involved in the biogenesis of COPII-coated vesicles, whereas at the NPC its function is unknown. We show here, by yeast two-hybrid screenings and biochemical assays, that a region at the amino terminus of the human nuclear pore complex protein Nup96 interacts with the WD (Trp-Asp) repeat region of human Sec13. By using immunofluorescence and confocal and immunoelectron microscopy, we found that in interphase, Sec13 and Nup96 are localized at both sides of the NPC in addition to other intracellular sites. In mitosis, Sec13 was found dispersed throughout the cell, whereas a pool of Nup96 colocalized with the spindle apparatus. Photobleaching experiments showed that Sec13 shuttles between intranuclear sites and the cytoplasm, and a fraction of Sec13 is stably associated with NPCs. Cotransfection of Sec13 and the Sec13 binding site of Nup96 decreased the mobile pool of Sec13, demonstrating the interaction of Sec13 and Nup96 in vivo. Targeting studies showed that Sec13 is actively transported into the nucleus and contains a nuclear localization signal. These results indicate that Sec13 stably interacts with Nup96 at the NPC during interphase and that the shuttling of Sec13 between the nucleus and the cytoplasm may couple and regulate functions between these two compartments.


1973 ◽  
Vol 58 (2) ◽  
pp. 317-331 ◽  
Author(s):  
Robert S. Lake

Exponentially growing Chinese hamster cells are found to contain two major phosphokinase activities with specificity for the phosphorylation of F1 (lysine-rich) histone. These two activities, designated KI and KII, were extracted with 0.35 M NaCl and fractionated in 0.2 M NaCl by Sephadex G-200 gel filtration. KI, which is similar to the ubiquitous cyclic 3',5'-adenosine monophosphate (cAMP)-dependent phosphokinase, differs from KII by several criteria. KII is mol wt 90,000, cAMP independent, rapidly turned over in vivo, low Km for ATP, and phosphorylates F1 histone at several unique sites. Comparative examination of metaphase-arrested (M) and counterpart interphase (I) cells for these two activities reveals that KII is responsible for the overall high activity in M-arrested cells. Pulse labeling of cells with 32P during traverse of the G2-M phase of the cell cycle reveals an in vivo tryptic-phosphopeptide pattern in whole unfractionated F1 which is unique to M cells. Seven major phosphopeptides derived by in vitro phosphorylation of F1 with the KII enzyme correspond to these M cell-specific phosphorylation sites observed in vivo. It is suggested that KII activity predominates during the G2-M transition and that F1 is its natural in vivo substrate.


1998 ◽  
Vol 9 (3) ◽  
pp. 623-635 ◽  
Author(s):  
Stephen A. Jesch ◽  
Adam D. Linstedt

Partitioning of the mammalian Golgi apparatus during cell division involves disassembly at M-phase. Despite the importance of the disassembly/reassembly pathway in Golgi biogenesis, it remains unclear whether mitotic Golgi breakdown in vivo proceeds by direct vesiculation or involves fusion with the endoplasmic reticulum (ER). To test whether mitotic Golgi is fused with the ER, we compared the distribution of ER and Golgi proteins in interphase and mitotic HeLa cells by immunofluorescence microscopy, velocity gradient fractionation, and density gradient fractionation. While mitotic ER appeared to be a fine reticulum excluded from the region containing the spindle-pole body, mitotic Golgi appeared to be dispersed small vesicles that penetrated the area containing spindle microtubules. After cell disruption, M-phase Golgi was recovered in two size classes. The major breakdown product, accounting for at least 75% of the Golgi, was a population of 60-nm vesicles that were completely separated from the ER using velocity gradient separation. The minor breakdown product was a larger, more heterogenously sized, membrane population. Double-label fluorescence analysis of these membranes indicated that this portion of mitotic Golgi also lacked detectable ER marker proteins. Therefore we conclude that the ER and Golgi remain distinct at M-phase in HeLa cells. To test whether the 60-nm vesicles might form from the ER at M-phase as the result of a two-step vesiculation pathway involving ER–Golgi fusion followed by Golgi vesicle budding, mitotic cells were generated with fused ER and Golgi by brefeldin A treatment. Upon brefeldin A removal, Golgi vesicles did not emerge from the ER. In contrast, the Golgi readily reformed from similarly treated interphase cells. We conclude that Golgi-derived vesicles remain distinct from the ER in mitotic HeLa cells, and that mitotic cells lack the capacity of interphase cells for Golgi reemergence from the ER. These experiments suggest that mitotic Golgi breakdown proceeds by direct vesiculation independent of the ER.


Author(s):  
James R. Gaylor ◽  
Fredda Schafer ◽  
Robert E. Nordquist

Several theories on the origin of the melanosome exist. These include the Golgi origin theory, in which a tyrosinase-rich protein is "packaged" by the Golgi apparatus, thus forming the early form of the melanosome. A second theory postulates a mitochondrial origin of melanosomes. Its author contends that the melanosome is a modified mitochondria which acquires melanin during its development. A third theory states that a pre-melanosome is formed in the smooth or rough endoplasmic reticulum. Protein aggregation is suggested by one author as a possible source of the melanosome. This fourth theory postulates that the melanosome originates when the protein products of several genetic loci aggregate in the cytoplasm of the melanocyte. It is this protein matrix on which the melanin is deposited. It was with these theories in mind that this project was undertaken.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


Sign in / Sign up

Export Citation Format

Share Document