An Ultra-Structural Study of Human Melanoma in Vivo and Vitro

Author(s):  
James R. Gaylor ◽  
Fredda Schafer ◽  
Robert E. Nordquist

Several theories on the origin of the melanosome exist. These include the Golgi origin theory, in which a tyrosinase-rich protein is "packaged" by the Golgi apparatus, thus forming the early form of the melanosome. A second theory postulates a mitochondrial origin of melanosomes. Its author contends that the melanosome is a modified mitochondria which acquires melanin during its development. A third theory states that a pre-melanosome is formed in the smooth or rough endoplasmic reticulum. Protein aggregation is suggested by one author as a possible source of the melanosome. This fourth theory postulates that the melanosome originates when the protein products of several genetic loci aggregate in the cytoplasm of the melanocyte. It is this protein matrix on which the melanin is deposited. It was with these theories in mind that this project was undertaken.

2001 ◽  
Vol 114 (24) ◽  
pp. 4629-4635
Author(s):  
Michel J. Massaad ◽  
Annette Herscovics

The α1,2-mannosidase Mns1p involved in the N-glycosidic pathway in Saccharomyces cerevisiae is a type II membrane protein of the endoplasmic reticulum. The localization of Mns1p depends on retrieval from the Golgi through a mechanism that involves Rer1p. A chimera consisting of the transmembrane domain of Mns1p fused to the catalytic domain of the Golgi α1,2-mannosyltransferase Kre2p was localized in the endoplasmic reticulum of Δpep4 cells and in the vacuoles of rer1/Δpep4 by indirect immunofluorescence. The split-ubiquitin system was used to determine if there is an interaction between Mns1p and Rer1p in vivo. Co-expression of NubG-Mns1p and Rer1p-Cub-protein A-lexA-VP16 in L40 yeast cells resulted in cleavage of the reporter molecule, protein A-lexA-VP16, detected by western blot analysis and by expression of β-galactosidase activity. Sec12p, another endoplasmic reticulum protein that depends on Rer1p for its localization, also interacted with Rer1p using the split-ubiquitin assay, whereas the endoplasmic reticulum protein Ost1p showed no interaction. A weak interaction was observed between Alg5p and Rer1p. These results demonstrate that the transmembrane domain of Mns1p is sufficient for Rer1p-dependent endoplasmic reticulum localization and that Mns1p and Rer1p interact. Furthermore, the split-ubiquitin system demonstrates that the C-terminal of Rer1p is in the cytosol.


1989 ◽  
Vol 258 (2) ◽  
pp. 541-545 ◽  
Author(s):  
R Reiter ◽  
R Otter ◽  
A Wendel

Selenium (Se)-deficient mice were labelled in vivo with single pulses of [75Se]selenite, and the intrahepatic distribution of the trace element was studied by subcellular fractionation. At 1 h after intraperitoneal injection of 3.3 or 10 micrograms of Se/kg body weight, 15% of the respective doses were found in the liver. Accumulation in the subcellular fractions followed the order: Golgi vesicular much greater than lysosomal greater than cytosolic = microsomal greater than mitochondrial, peroxisomal, nuclear and plasma-membrane fraction. At a dose of 3.3 micrograms/kg, more than 90% of the hepatic Se was protein-bound. When cross-contamination was accounted for, the following specific Se contents of the subcellular compartments were extrapolated: Golgi apparatus, 7.50 pmol/mg; cytosol, 0.90 pmol/mg; endoplasmic reticulum, 0.80 pmol/mg; mitochondria, 0.49 pmol/mg; nuclei, lysosomes, peroxisomes and plasma membrane, less than 0.4 pmol/mg. At 10 micrograms/kg, a roughly 2-3-fold increase in Se content of all fractions was found without major changes in the intrahepatic distribution pattern. An extraordinary rise in the cytosolic fraction was due to an apparently non-protein-bound Se pool. At 24 h after dosing, total hepatic Se had decreased to 6% of the initial dose and had become predominantly protein-bound. The 60% decrease in hepatic Se was reflected in a similar fall in the subcellular levels of the trace element. The Golgi apparatus still had the highest specific Se content, although accumulation was 5 times less than that after 1 h. The cytosolic pool accounted for 50% of the hepatic Se at both labelling times. After 1 h the Golgi apparatus was, with 19%, the second largest intrahepatic pool, followed by the endoplasmic reticulum with 16%. The high affinity and fast response of the Golgi apparatus to Se supplementation of deficient mice is interpreted in terms of a predominant function of this cell compartment in the processing and the export of Se-proteins from the liver.


1970 ◽  
Vol 45 (3) ◽  
pp. 576-585 ◽  
Author(s):  
Richard L. Wood ◽  
Peter G. Legg

The in vivo effects of 3-amino-1,2,4-triazole (AT) on the fine structure of microbodies in hepatic cells of male rats has been studied by the peroxidase-staining technique. Within 1 hr of intraperitoneal injection AT abolishes microbody peroxidase-staining, and the return of staining coincides temporally with the known pattern of return of catalase activity following AT inhibition; this is further evidence that the peroxidase staining of microbodies is due to catalase activity. Peroxidase staining reappears in the microbody matrix without evidence of either massive degradation or rapid proliferation of the organelles. Furthermore, during the period of return of activity, ribosomal staining occurs adjacent to microbodies whose matrix shows little or no peroxidase staining. These observations are interpreted as evidence that (a) catalase is capable of entering preexisting microbodies without traversing the cisternae of the rough endoplasmic reticulum or the Golgi apparatus, and that (b) the ribosomal staining is probably not cytochemical diffusion artifact and may represent a localized site of synthesis or activation of catalase.


1979 ◽  
Vol 149 (1) ◽  
pp. 17-26 ◽  
Author(s):  
JWM Van Der Meer ◽  
RHJ Beelen ◽  
DM Fluitsma ◽  
R Van Furth

Monoblasts, promonocytes, and macrophages in in vitro cultures of murine bone marrow were studied ultrastructurally, with special attention to peroxidatic activity. Monoblasts show peroxidatic activity in the rough endoplasmic reticulum and nuclear envelope as well as in the granules. The presence of peroxidatic activity in the Golgi apparatus could not be determined. Promonocytes have peroxidase-positive rough endoplasmic reticulum, Golgi apparatus, nuclear envelope, and granules, as previously reported. During culture, cells are formed with peroxidatic activity similar to that of monocytes or exudate macrophages (positive granules; negative Golgi apparatus, RER, and nuclear envelope); we call these cells early macrophages. In addition, transitional macrophages with both positive granules and positive RER, nuclear envelope, negative Golgi apparatus (as in exudate- resident macrophages in vivo), and mature macrophages with peroxidatic activity only in the RER and nuclear envelope (as in resident macrophages in vivo) were found. A considerable number of cells without detectable peroxidatic activity were also encountered. Our finding that macrophages with the peroxidatic pattern of monocytes (early macrophages), exudate-resident macrophages (transitional macrophages), and resident macrophages (mature macrophages), develop in vitro from proliferating precursor cells deriving from the bone marrow, demonstrates once again that resident macrophages in tissues originate from precursor cells in the bone marrow. Therefore, this conclusion can no longer be challenged on the basis of a cytochemical difference between monocytes and exudate macrophages on the one hand and resident macrophages on the other.


2000 ◽  
Vol 11 (11) ◽  
pp. 3859-3871 ◽  
Author(s):  
Sandra Wittke ◽  
Martin Dünnwald ◽  
Nils Johnsson

SEC62 encodes an essential component of the Sec-complex that is responsible for posttranslational protein translocation across the membrane of the endoplasmic reticulum in Saccharomyces cerevisiae. The specific role of Sec62p in translocation was not known and difficult to identify because it is part of an oligomeric protein complex in the endoplasmic reticulum membrane. An in vivo competition assay allowed us to characterize and dissect physical and functional interactions between Sec62p and components of the Sec-complex. We could show that Sec62p binds via its cytosolic N- and C-terminal domains to the Sec-complex. The N-terminal domain, which harbors the major interaction site, binds directly to the last 14 residues of Sec63p. The C-terminal binding site of Sec62p is less important for complex stability, but adjoins the region in Sec62p that might be involved in signal sequence recognition.


1972 ◽  
Vol 20 (3) ◽  
pp. 220-224 ◽  
Author(s):  
A. HADDAD

Radioactive galactose was injected intravenously into rats and localized in thyroid follicular cells by electron microscopic radioautography at intervals ranging from 2.5 to 30 min after injection. The galactose label was mostly present in the Golgi apparatus at 2.5 min, with some of it in the adjacent rough endoplasmic reticulum. By 30 min, the label was found in apical vesicles and colloid. It was concluded that galactose is added to the carbohydrate side chains of incomplete thyroglobulin molecules during their travel through the cisternae of the endoplasmic reticulum into the Golgi apparatus; the uptake begins as this organelle is approached, but predominates within it. The thyroglobulin molecule which has thus been labeled is transported by the apical vesicles to the colloid.


1970 ◽  
Vol 47 (3) ◽  
pp. 555-567 ◽  
Author(s):  
Hans Glaumann ◽  
Jan L. E. Ericsson

A comparative biochemical and radioautographic in vivo study was performed to identify the site of synthesis and route of migration of albumin in the parenchymal liver cell after labeling with leucine-14C or leucine-3H via the portal vein. Free cytoplasmic ribosomes, membrane-bound ribosomes, rough- and smooth-surfaced microsomes, and Golgi membranes were isolated. The purity of the Golgi fraction was examined morphologically and biochemically. After administration of leucine-14C, labeled albumin was extracted, and the sequence of transport was followed from one fraction to the other. Approximately 2 min after the intravenous injection, bound ribosomes displayed a maximal rate of leucine-14C incorporation into albumin. 4 min later, a peak was reached for rough microsomes. Corresponding maximal activities for smooth microsomes were recorded at 15 min, and for the Golgi apparatus at ∼20 min. The relative amount of albumin, calculated on a membrane protein basis, was higher in the Golgi fraction than in the microsomes. By radioautography the silver grains were preferentially localized over the rough-surfaced endoplasmic reticulum at the 5 min interval. Apparent activity in the Golgi zone was noted 9 min after the injection; at 15 and 20 min, the majority of the grains were found in this location. Many of the grains associated with the Golgi apparatus were located over Golgi vacuoles containing 300–800 A electron-opaque bodies. It is concluded that albumin is synthesized on bound ribosomes, subsequently is transferred to the cavities of rough-surfaced endoplasmic reticulum, and then undergoes migration to the smooth-surfaced endoplasmic reticulum and the Golgi apparatus. In the latter organelle, albumin can be expected to be segregated together with very low density lipoprotein in vacuoles known to move toward the sinusoidal portion of the cell and release their content to the blood.


1994 ◽  
Vol 107 (5) ◽  
pp. 1321-1331 ◽  
Author(s):  
M. Mizuno ◽  
S.J. Singer

The intracellular transport of secretory proteins involves at an early stage the formation of vesicles from transitional elements of the endoplasmic reticulum (ER) containing these proteins and the transfer of these vesicles to the cis-face of the Golgi apparatus. We propose that the latter transfer process does not occur by random diffusion, but is instead mediated by tracking along stable microtubules. To test this proposal, we have carried out double immunoelectron microscopic labeling experiments on frozen sections of HepG2 hepatoma cells secreting the protein human serum albumin (HSA). By a cycloheximide treatment protocol, the stage during which the transfer of newly synthesized HSA from the ER to the Golgi apparatus occurs in vivo was determined. Sections of the cells were then double immunolabeled using primary antibodies to HSA and to glu-tubulin, the latter specifically detecting stable microtubules. We observed a significantly high frequency of HSA-containing structures between the ER and the Golgi apparatus with which stable microtubules were closely associated. These results support the proposal that stable microtubules may play a critical role in directing the transfer process from the ER to the Golgi apparatus.


1991 ◽  
Vol 39 (8) ◽  
pp. 1077-1087 ◽  
Author(s):  
H Tamaki ◽  
S Yamashina

We studied the ultrastructure and cytochemistry of mitotic parotid acinar cells in vivo after induction of mitosis by isoproterenol injection. With entrance of the cells into the division cycle, the Golgi apparatus lost its characteristic stacked structure and internal polarity among the cisternae, appearing as fragments distributed throughout the cytoplasm. These fragments consisted of electron-lucent vesiculotubular structures and electron-dense 70-nm vesicles; neither component showed thiamine pyrophosphatase activity, a marker for trans cisternae of the Golgi apparatus, but the 70-nm vesicles showed a positive reaction for osmium impregnation, indicating retention of the cis nature. The rough endoplasmic reticulum was dilated and fragmented. Recovery of the structure of Golgi apparatus and rearrangement of rough endoplasmic reticulum occurred in daughter cells during telophase. These changes were the same as those observed after drug-induced inhibition of protein transport. The secretory granules were not dispersed but were divided into two groups with which centrioles were closely associated. Both groups migrated with the centrioles as far as the next interphase. The distribution of 5'-nucleotidase on the luminal plasma membrane showed no change during the process of division, thus demonstrating that surface polarity was maintained during mitosis. These changes in organelle structure and distribution may be due to the conversion of cell function from a secretory to a mitotic action.


2001 ◽  
Vol 357 (2) ◽  
pp. 393-398 ◽  
Author(s):  
Syuichi TAKANO ◽  
Renu WADHWA ◽  
Youji MITSUI ◽  
Sunil C. KAUL

A heat-shock protein (hsp) 70 family member mortalin/glucose-regulated protein (GRP) 75/peptide-binding protein 74 (PBP74) has been localized to various cellular compartments including mitochondria, endoplasmic reticulum and cytoplasmic vesicles. Here we describe its interactions with an endoplasmic reticulum protein GRP94, a member of the hsp90 family of GRPs. Interactions were identified, confirmed and characterized by far-Western screening, in vivo reporter and co-immunoprecipitation assays. Interacting domains of the two proteins were also characterized by mutational analysis. Such interactions of these two GRPs may be important for function of either or both and therefore provide important information for further studies.


Sign in / Sign up

Export Citation Format

Share Document