scholarly journals HSC70 regulates cold-induced caspase-1 hyperactivation by an autoinflammation-causing mutant of cytoplasmic immune receptor NLRC4

2019 ◽  
Author(s):  
Akhouri Kishore Raghawan ◽  
Rajashree Ramaswamy ◽  
Vegesna Radha ◽  
Ghanshyam Swarup

AbstractNLRC4 is an innate immune receptor, which upon detection of certain pathogens or internal distress signal, initiates caspase-1 mediated inflammatory response. A gain-of-function mutation, H443P in NLRC4, causes familial cold autoinflammatory syndrome (FCAS) characterized by cold-induced hyperactivation of caspase-1 and inflammation. Here, we show that heat shock cognate protein 70 (HSC70) complexes with NLRC4 and negatively regulates caspase-1 activation by NLRC4-H443P. Compared to NLRC4, the structurally altered NLRC4-H443P shows enhanced interaction with HSC70. Knockdown of HSC70 or inhibition of its ATPase activity enhances caspase-1 activation by NLRC4-H443P. Exposure to subnormal temperature resulted in reduced interaction of NLRC4-H443P with HSC70, and an increase in its ability to form ASC-specks and activate caspase-1. By demonstrating that HSC70 differentially interacts with NLRC4-H443P mutant in a temperature-dependent manner to regulate caspase-1 activation, we provide a mechanism for cold-induced inflammation seen in FCAS patients with NLRC4-H443P mutation.

2019 ◽  
Vol 116 (43) ◽  
pp. 21694-21703 ◽  
Author(s):  
Akhouri Kishore Raghawan ◽  
Rajashree Ramaswamy ◽  
Vegesna Radha ◽  
Ghanshyam Swarup

NLRC4 [nucleotide-binding domain and leucine-rich repeat (NLR) family, caspase recruitment domain (CARD) containing 4] is an innate immune receptor, which, upon detection of certain pathogens or internal distress signals, initiates caspase-1–mediated interleukin-1β maturation and an inflammatory response. A gain-of-function mutation, H443P in NLRC4, causes familial cold autoinflammatory syndrome (FCAS) characterized by cold-induced hyperactivation of caspase-1, enhanced interleukin-1β maturation, and inflammation. Although the H443P mutant shows constitutive activity, the mechanism involved in hyperactivation of caspase-1 by NLRC4-H443P upon exposure of cells to lower temperature is not known. Here, we show that heat shock cognate protein 70 (HSC70) complexes with NLRC4 and negatively regulates caspase-1 activation by NLRC4-H443P in human cells. Compared with NLRC4, the structurally altered NLRC4-H443P shows enhanced interaction with HSC70. Nucleotide binding- and leucine-rich repeat domains of NLRC4, but not its CARD, can engage in complex formation with HSC70. Knockdown of HSC70 enhances apoptosis-associated speck-like protein containing a CARD (ASC)-speck formation and caspase-1 activation by NLRC4-H443P. Exposure to subnormal temperature results in reduced interaction of NLRC4-H443P with HSC70, and an increase in its ability to form ASC specks and activate caspase-1. Unlike the NLRC4-H443P mutant, another constitutively active mutant (NLRC4-V341A) associated with autoinflammatory diseases, but not FCAS, showed neither enhanced interaction with HSC70 nor an increase in inflammasome formation upon exposure to subnormal temperature. Our results identify HSC70 as a negative regulator of caspase-1 activation by the temperature-sensitive NLRC4-H443P mutant. We also show that low-temperature–induced hyperactivation of caspase-1 by NLRC4-H443P is due to loss of inhibition by HSC70.


1996 ◽  
Vol 1 (3) ◽  
pp. 161 ◽  
Author(s):  
Lucien J. Houenou ◽  
Linxi Li ◽  
Ming Lei ◽  
Carol R. Kent ◽  
Michael Tytell

2021 ◽  
Vol 1869 (12) ◽  
pp. 140719
Author(s):  
Noeli Soares Melo Silva ◽  
Luiz Fernando de Camargo Rodrigues ◽  
Paulo Roberto Dores-Silva ◽  
Carlos Alberto Montanari ◽  
Carlos Henrique Inácio Ramos ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2124 ◽  
Author(s):  
Erna Sulistyowati ◽  
Mei-Yueh Lee ◽  
Lin-Chi Wu ◽  
Jong-Hau Hsu ◽  
Zen-Kong Dai ◽  
...  

Heat shock cognate protein 70 (HSC70), a molecular chaperone, is constitutively expressed by mammalian cells to regulate various cellular functions. It is associated with many diseases and is a potential therapeutic target. Although HSC70 also possesses an anti-inflammatory action, the mechanism of this action remains unclear. This current study aimed to assess the anti-inflammatory effects of HSC70 in murine macrophages RAW 264.7 exposed to lipopolysaccharides (LPS) and to explain its pathways. Mouse macrophages (RAW 264.7) in 0.1 µg/mL LPS incubation were pretreated with recombinant HSC70 (rHSC70) and different assays (Griess assay, enzyme-linked immune assay/ELISA, electrophoretic mobility shift assay/EMSA, gelatin zymography, and Western blotting) were performed to determine whether rHSC70 blocks pro-inflammatory mediators. The findings showed that rHSC70 attenuated the nitric oxide (NO) generation, tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) expressions in LPS-stimulated RAW264.7 cells. In addition, rHSC70 preconditioning suppressed the activities and expressions of matrix metalloproteinase-2 (MMP-2) and MMP-9. Finally, rHSC70 diminished the nuclear translocation of nuclear factor-κB (NF-κB) and reduced the phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (MAPK), and phosphatidylinositol-3-kinase (PI3K/Akt). We demonstrate that rHSC70 preconditioning exerts its anti-inflammatory effects through NO production constriction; TNF-α, and IL-6 suppression following down-regulation of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and MMP-2/MMP-9. Accordingly, it ameliorated the signal transduction of MAPKs, Akt/IκBα, and NF-κB pathways. Therefore, extracellular HSC70 plays a critical role in the innate immunity modulation and mechanisms of endogenous protective stimulation.


1995 ◽  
Vol 675 (1-2) ◽  
pp. 98-102 ◽  
Author(s):  
Shin Fukudo ◽  
Koji Abe ◽  
Michio Hongo ◽  
Atsushi Utsumi ◽  
Yasuto Itoyama

Sign in / Sign up

Export Citation Format

Share Document