scholarly journals Molecular mechanisms for intestinal HCO3- secretion and its regulation by guanylin in seawater-acclimated eels

2019 ◽  
Author(s):  
Yoshio Takei ◽  
Marty K.S. Wong ◽  
Masaaki Ando

AbstractThe intestine of marine teleosts secretes HCO3- into the lumen and precipitates Ca2+ and Mg2+ in the imbibed seawater as carbonates to decrease luminal fluid osmolality and facilitate water absorption. However, reports on studies on the hormonal regulation of HCO3- secretion are just emerging. Here, we showed that guanylin (GN) applied to the mucosal side of intestinal epithelia increased HCO3- secretion in seawater-acclimated eels. The effect of GN on HCO3- secretion was slower than that on the short-circuit current, and the time-course of the GN effect was similar to that of bumetanide. Mucosal bumetanide and serosal 4,4’-dinitrostilbene-2,2’-disulfonic acid (DNDS) inhibited the GN effect, suggesting an involvement of apical Na+-K+-2Cl- cotransporter (NKCC2) and basolateral Cl-/HCO3- exchanger (AE)/Na+-HCO3- cotransporter (NBC) in the GN effect. However, mucosal DNDS and diphenylamine-2-carboxylic acid (DPC) failed to inhibit the GN effect, showing that apical AE and Cl- channel are not involved. To identify molecular species of possible transporters involved in the GN effect, we performed RNA-seq analyses followed by quantitative real-time PCR after transfer of eels to seawater. Among the genes upregulated after seawater transfer, those of Slc26a3a, b (DRAa, b) and Slc26a6a, c (Pat-1a, c) on the apical membrane of the intestinal epithelial cells, and those of Sls4a4a (NBCe1a), Slc4a7 (NBCn1), Slc4a10a (NBCn2a) and Slc26a1 (Sat-1) on the basolateral membrane were candidate transporters involved in HCO3- secretion. Judging from the slow effect of GN, we suggest that GN inhibits NKCC2b on the apical membrane and decreases cytosolic Cl- and Na+, which then activates apical DNDS-insensitive DRAa, b and basolateral DNDS-sensitive NBCela, n1, n2a to enhance transcellular HCO3- flux across the intestinal epithelia of seawater-acclimated eels.

1989 ◽  
Vol 257 (1) ◽  
pp. C45-C51 ◽  
Author(s):  
S. M. O'Grady ◽  
P. J. Wolters

Porcine gallbladder, stripped of serosal muscle, mounted in Ussing chambers, and bathed in plasma-like Ringer solution generates a serosal positive transepithelial potential of 4-7 mV and a short-circuit current (Isc) of 50-120 microA/cm2. Substitution of Cl with gluconate or HCO3 with N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) results in a 50% decrease in Isc. Treatment with 1 mM amiloride (mucosal side) or 0.1 mM acetazolamide (both sides) causes 25-27% inhibition of the Isc. Mucosal addition of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibits the Isc by 17%. Serosal addition of 0.1 mM bumetanide inhibits the Isc by 28%. Amiloride (1 mM) inhibits the net transepithelial fluxes of Na and Cl by 55 and 41%, respectively. Substitution of Cl with gluconate inhibits the net Na flux by 50%, whereas substitution of HCO3 with HEPES inhibits 85-90% of the net Na flux and changes Cl absorption to net secretion. Based on these results, it is hypothesized that Na and Cl transport across the apical membrane is mediated by two pathways, Na-H/Cl-HCO3 exchange and Na-HCO3 cotransport. Partial recycling of Cl and HCO3 presumably occurs through a Cl conductive pathway and Cl-HCO3 exchange, respectively, in the apical membrane. This results in net Na absorption, which accounts for most of the Isc observed under basal conditions. The effect of bumetanide on the basolateral membrane and the fact that Cl secretion occurs when HCO3 is absent suggests that Cl secretion involves a basolateral NaCl or Na-K-Cl cotransport system arranged in series with a Cl conductive pathway in the apical membrane.


2007 ◽  
Vol 292 (6) ◽  
pp. G1683-G1694 ◽  
Author(s):  
A. James Moser ◽  
A. Gangopadhyay ◽  
N. A. Bradbury ◽  
K. W. Peters ◽  
R. A. Frizzell ◽  
...  

Pathological rates of gallbladder salt and water transport may promote the formation of cholesterol gallstones. Because prairie dogs are widely used as a model of this event, we characterized gallbladder ion transport in animals fed control chow by using electrophysiology, ion substitution, pharmacology, isotopic fluxes, impedance analysis, and molecular biology. In contrast to the electroneutral properties of rabbit and Necturus gallbladders, prairie dog gallbladders generated significant short-circuit current ( Isc; 171 ± 21 μA/cm2) and lumen-negative potential difference (−10.1 ± 1.2 mV) under basal conditions. Unidirectional radioisotopic fluxes demonstrated electroneutral NaCl absorption, whereas the residual net ion flux corresponded to Isc. In response to 2 μM forskolin, Isc exceeded 270 μA/cm2, and impedance estimates of the apical membrane resistance decreased from 200 Ω·cm2 to 13 Ω·cm2. The forskolin-induced Isc was dependent on extracellular HCO3− and was blocked by serosal 4,4′-dinitrostilben-2,2′-disulfonic acid (DNDS) and acetazolamide, whereas serosal bumetanide and Cl− ion substitution had little effect. Serosal trans-6-cyano-4-( N-ethylsulfonyl- N-methylamino)-3-hydroxy-2,2-dimethyl-chroman and Ba2+ reduced Isc, consistent with the inhibition of cAMP-dependent K+ channels. Immunoprecipitation and confocal microscopy localized cystic fibrosis transmembrane conductance regulator protein (CFTR) to the apical membrane and subapical vesicles. Consistent with serosal DNDS sensitivity, pancreatic sodium-bicarbonate cotransporter protein pNBC1 expression was localized to the basolateral membrane. We conclude that prairie dog gallbladders secrete bicarbonate through cAMP-dependent apical CFTR anion channels. Basolateral HCO3− entry is mediated by DNDS-sensitive pNBC1, and the driving force for apical anion secretion is provided by K+ channel activation.


1985 ◽  
Vol 58 (5) ◽  
pp. 1729-1735 ◽  
Author(s):  
J. H. Widdicombe ◽  
D. L. Coleman ◽  
W. E. Finkbeiner ◽  
I. K. Tuet

Dispersed isolated cells were obtained from human tracheal mucosa by digestion with collagenase. Up to 1.5 X 10(8) cells were obtained per trachea and showed up to 95% viability, as judged by trypan blue exclusion. When grown in culture, the cells formed monolayers after approximately 4 days. Electron microscopy of the monolayers revealed a polarized structure. An apical membrane, containing microvilli and a pronounced glycocalyx, was separated from a relatively unspecialized basolateral membrane by typical tight junctions. Monolayers grown on nucleopore filters showed resistances of 44–1,800 omega. cm2 and transepithelial potential differences of 0.1–7.6 mV. Short-circuit current (Isc) was increased by isoproterenol, prostaglandins E2 and F2 alpha, and bradykinin. The loop diuretic, bumetanide, reduced Isc when added to the basolateral (serosal) side but had no effect from the apical (mucosal) side of the monolayers. Furosemide and MK-196 also inhibited Isc. Mucosal amiloride inhibited Isc. Serosal amiloride or mucosal ouabain had no effect on Isc. Serosal ouabain brought Isc to zero after approximately 15 min.


1980 ◽  
Vol 239 (6) ◽  
pp. G532-G535 ◽  
Author(s):  
A. Ayalon ◽  
A. Corcia ◽  
G. Klemperer ◽  
S. R. Caplan

The effect of furosemide on acid secretion and Cl- transport was studied in isolated fundic mucosa of the guinea pig. Furosemide (10(-3) M), applied to the serosal side produced an immediate effect on the short-circuit current (Isc), lowering it by 47 +/- 2%. Potential difference decreased by 29 +/- 3%, electrical conductance by 18 +/- 4%, acid secretion by 38 +/- 1%, and net flux of Cl- from serosal-to-mucosal side by 37%. Application of the drug to the mucosal side produced similar effects on acid secretion and on the electrical parameters. It is suggested that furosemide blocks the entrance of Cl-, by the Na+--Cl- cotransport mechanism, through the basolateral membrane of the secreting cell. The consequent reduction in electrogenic Cl- transport would cause Isc and acid secretion to decrease. A reduction of Cl- conductance of the apical membrane, upon mucosal application of the drug, would cause similar effects on acid secretion and Cl- transport.


2001 ◽  
Vol 281 (2) ◽  
pp. C633-C648 ◽  
Author(s):  
Sasha Blaug ◽  
Kevin Hybiske ◽  
Jonathan Cohn ◽  
Gary L. Firestone ◽  
Terry E. Machen ◽  
...  

Mammary epithelial 31EG4 cells (MEC) were grown as monolayers on filters to analyze the apical membrane mechanisms that help mediate ion and fluid transport across the epithelium. RT-PCR showed the presence of cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC) message, and immunomicroscopy showed apical membrane staining for both proteins. CFTR was also localized to the apical membrane of native human mammary duct epithelium. In control conditions, mean values of transepithelial potential (apical-side negative) and resistance ( R T) are −5.9 mV and 829 Ω · cm2, respectively. The apical membrane potential ( V A) is −40.7 mV, and the mean ratio of apical to basolateral membrane resistance ( R A/ R B) is 2.8. Apical amiloride hyperpolarized V A by 19.7 mV and tripled R A/ R B. A cAMP-elevating cocktail depolarized V A by 17.6 mV, decreased R A/ R B by 60%, increased short-circuit current by 6 μA/cm2, decreased R T by 155 Ω · cm2, and largely eliminated responses to amiloride. Whole cell patch-clamp measurements demonstrated amiloride-inhibited Na+ currents [linear current-voltage ( I-V) relation] and forskolin-stimulated Cl−currents (linear I-V relation). A capacitance probe method showed that in the control state, MEC monolayers either absorbed or secreted fluid (2–4 μl · cm−2 · h−1). Fluid secretion was stimulated either by activating CFTR (cAMP) or blocking ENaC (amiloride). These data plus equivalent circuit analysis showed that 1) fluid absorption across MEC is mediated by Na+ transport via apical membrane ENaC, and fluid secretion is mediated, in part, by Cl− transport via apical CFTR; 2) in both cases, appropriate counterions move through tight junctions to maintain electroneutrality; and 3) interactions among CFTR, ENaC, and tight junctions allow MEC to either absorb or secrete fluid and, in situ, may help control luminal [Na+] and [Cl−].


1990 ◽  
Vol 259 (2) ◽  
pp. C215-C223 ◽  
Author(s):  
O. A. Candia

Forskolin (and other Cl- secretagogues) does not affect the very small Na(+)-originated short-circuit current (Isc) across frog corneal epithelium bathed in Cl- free solutions. However, forskolin in combination with increased PCO2 bubbling of the solutions (5-20% CO2) stimulated Isc proportionally to PCO2 to a maximum of approximately 8 microA/cm2. This current could be eliminated and reinstated by sequentially changing the gas composition of the bubbling to 100% air and 20% CO2-80% air. The same effects were observed when PCO2 changes were limited to the apical-side solution. Stroma-to-tear HCO3- movement was deemed unlikely, since the increase in Isc was observed with a HCO3(-)-free solution on the stromal side and CO2 gassing limited to the tear side. From the effects of ouabain and tryptamine, at least 80% of the Isc across the basolateral membrane can be accounted for by the Na+ pump current plus K+ movement from cell to bath. Methazolamide also inhibited Isc. Current across the apical membrane cannot be attributed to an electronegative Na(+)-HCO3- symport given the insensitivity of Isc to a disulfonic stilbene and the fact that stroma-to-tear Na+ fluxes did not increase on stimulation of Isc. The tear-to-stroma Na+ flux also remained unaltered, negating an increased apical bath-to-cell Na+ flow. The forskolin-20% CO2 manipulation produced a depolarization of the intracellular potential, a reduction in the apical-to-basolateral resistance ratio, and a decrease in transepithelial resistance.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 269 (5) ◽  
pp. L561-L566 ◽  
Author(s):  
B. Q. Shen ◽  
R. J. Mrsny ◽  
W. E. Finkbeiner ◽  
J. H. Widdicombe

We have tested two hypotheses: 1) the cystic fibrosis transmembrane conductance regulator (CFTR) represents the predominant Cl conductance in the apical membrane of human tracheal epithelium, and 2) CFTR in this tissue is close to maximally activated under baseline conditions. In support of the first hypothesis, we found 1) when the level of differentiation of cultures was varied by varying the culture conditions, there was a significant positive correlation between the levels of CFTR and the magnitude of mediator-induced Cl secretion. 2) Amiloride-insensitive baseline short-circuit current (Isc) and mediator-induced increases in Isc were inhibited by diphenylamine-2-carboxylic acid (DPAC) but not by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a pharmacology consistent with passage of apical membrane Cl current through CFTR; Ca-activated Cl channels are inhibited by DIDS but not by DPAC. 3) Raising temperature from 22 degrees to 37 degrees C increased 125I efflux, and this increase was inhibited by DPAC and blockers of protein kinase A, but not by DIDS or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester. In support of the second hypothesis, we have earlier shown [M. Yamaya, W.E. Finkbeiner, S.Y. Chun, and J.H. Widdicombe. Am. J. Physiol. 262 (Lung Cell. Mol. Physiol. 6): L713-L724, 1992] that adenosine 3',5'-cyclic monophosphate (cAMP)-elevating agents are essentially without effect on Isc across primary cultures of human tracheal epithelium. Here, we further show that these agents are also usually without effect on 125I efflux; the mean increase in efflux in response to elevating cAMP was approximately 20% that of raising temperature from 22 degrees to 37 degrees C.


1997 ◽  
Vol 273 (1) ◽  
pp. C148-C160 ◽  
Author(s):  
R. W. Freel ◽  
M. Hatch ◽  
N. D. Vaziri

The ability of a Cl-secreting epithelium to support net secretion of an anion other than a halide was investigated with 35SO4 flux measurements across the isolated, short-circuited rabbit distal colon. In most experiments, 36Cl fluxes were simultaneously measured to validate the secretory capacity of the tissues. Serosal addition of dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP, 0.5 mM) stimulated a sustained net secretion of SO4 (about -3.0 nmol.cm-2.h-1 from a 0.20 mM solution) via an increase in the serosal-to-mucosal unidirectional flux, whereas Ca ionophore A-23187 (1 microM, serosal) produced a more transient stimulation of SO4 and Cl secretion. Net adenosine 3',5'-cyclic monophosphate (cAMP)-dependent SO4 and Cl secretion were strongly voltage sensitive, principally through the potential dependence of the serosal-to-mucosal fluxes, indicating an electrogenic transport process. Symmetrical replacement of either Na, K, or Cl inhibited cAMP-dependent SO4 secretion, whereas HCO3-free buffers had no effect on SO4 secretion. Serosal bumetanide (50 microM) or furosemide (100 microM) reduced DBcAMP-stimulated SO4 and Cl secretion, whereas serosal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (50 microM) blocked DBcAMP-induced SO4 secretion while enhancing net Cl secretion and short-circuit current. Mucosal 5-nitro-2-(3-phenylpropylamino)benzoic acid partially inhibited SO4 secretion and completely inhibited Cl secretion. It is concluded that secretagogue-stimulated SO4 secretion, like Cl secretion, may be an electrogenic process mediated by diffusive efflux through an apical anion conductance. Cellular accumulation of SO4 across the basolateral membrane appears to be achieved by a mechanism that is distinct from that employed by Cl.


1988 ◽  
Vol 254 (6) ◽  
pp. C816-C821 ◽  
Author(s):  
W. Van Driessche ◽  
D. Erlij

We incubated toad urinary bladders with Na+-free, isotonic K+ solutions on the apical side and increased the cationic conductance of the apical membrane with nystatin (150 U/ml). Under these conditions, the short-circuit current is mostly carried by K+ flowing from mucosa to serosa. Impedance measurements showed that in nystatin-treated preparations, the electrical behavior of the tissue is dominated by the basolateral membrane properties. Oxytocin (0.1 U/ml) produced an increase of the current and the conductance of the basolateral membrane. Both the resting and the oxytocin-stimulated current were rapidly and reversibly blocked by serosal Ba2+. Addition of the adenosine 3',5'-cyclic monophosphate (cAMP) analogue [8-(4-chloropheylthio)-cAMP] to the basolateral solution mimicked the effects of oxytocin. These results show that oxytocin and cAMP stimulate a potassium conductance in the basolateral membrane and that the stimulation is not related to an increase in sodium entry through the apical membrane. Addition of ouabain (10(-3) M) to the serosal solution did not modify the stimulation by oxytocin, indicating that the activated pathway is not linked to the rate of turnover of the Na+ pump.


1994 ◽  
Vol 266 (4) ◽  
pp. C946-C956 ◽  
Author(s):  
J. L. Edelman ◽  
H. Lin ◽  
S. S. Miller

Radioactive tracers and a modified capacitance-probe technique were used to characterize the mechanisms that mediate Cl and fluid absorption across the bullfrog retinal pigment epithelium (RPE)-choroid. In control (HCO3/CO2) Ringer solution, 36Cl was actively absorbed (retina to choroid) at a mean rate of 0.34 mu eq.cm-2.h-1 (n = 34) and accounted for approximately 25% of the short-circuit current. Apical bumetanide (100 microM) or basal 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; 1 mM) inhibited active Cl transport by 70 and 62%, respectively. Active Cl absorption was doubled, either by removing HCO3 from the bathing media or by elevating CO2 from 5 to 13%, and the increased flux was inhibited by apical bumetanide or basal DIDS. Open-circuit measurements of fluid absorption rate (Jv) and the net fluxes of 36Cl, 22Na, and 86Rb (K substitute) indicated that CO2-induced acidification stimulated NaCl and fluid absorption across the RPE. During acidification, bumetanide produced a twofold larger inhibition of Jv compared with control. Stimulation of net Cl absorption was most likely caused by inhibition of the the basolateral membrane intracellular pH-dependent Cl-HCO3 exchanger.


Sign in / Sign up

Export Citation Format

Share Document