scholarly journals Neurodegeneration caused by LRRK2-G2019S requires Rab10 in select dopaminergic neurons

2019 ◽  
Author(s):  
Stavroula Petridi ◽  
C. Adam Middleton ◽  
Alison Fellgett ◽  
Laura Covill ◽  
Amy Stewart ◽  
...  

AbstractInherited mutations in the LRRK2 protein are the commonest known cause of Parkinson’s, but the molecular link from increased kinase activity to pathological neurodegeneration remains to be determined.In vitro(biochemical and cell culture) assays led to the hypothesis that several Rab GTPases might be LRRK2 substrates. Here we show that Rab10 potently modifiesLRRK2-G2019Smediated electrophysiological responses in anin vivoscreen, in which each Rab was overexpressed inDrosophiladopaminergic neurons. We therefore tested the effect ofRab10loss of function on threeLRRK2-G2019Sphenotypes (vision, movement and sleep) that rely on dopaminergic circuits in both flies and mammals. The knock-out of Rab10in vivofully rescues the reduced responses induced by dopaminergicLRRK2-G2019Sin visual and motor (reaching, proboscis extension) assays, but the sleep phenotype is unaffected. We show that Rab10 is expressed in dopaminergic (tyrosine hydroxylase positive) neurons controlling vision and proboscis movement, but undetectable in those controlling sleep, indicating that anatomical and physiological patterns of Rab10 are related. Our results support the idea that LRRK2 phosphorylates separate targets in distinct neurons and confirm that one degenerative pathway starts with Rab10. Although Rab3 is another putative substrate of LRRK2, it shows no synergy with G2019S and localises to a different subset of dopaminergic neurons from Rab10. We propose that variations inRabexpression may contribute to differences in the rate of neurodegeneration seen in different dopaminergic nuclei in Parkinson’s.Significance StatementA key question in Parkinson’s is why dopamine neurons die particularly fast in some parts of thesubstantia nigra. We focused on the commonest Parkinson’s-related mutation, LRRK2-G2019S.In vitroassays suggested that neurodegeneration may start by LRRK2-G2019S increasing phosphorylation of Rab10. We found Rab10 in fly dopamine neurons in visual and motor pathways, but not in the sleep system. Rab10 knock-out rescues G2019S-induced visual and movement degeneration, leaving sleep dysfunction unaffected. Thus, LRRK2 activates at least two pathways, one Rab10-dependent, leading to neurodegenerationin vivo. Rab3 is found in a different subset of dopaminergic neurons and shows no synergy withLRRK2-G2019S. We propose that variations inRabexpression contribute to differences in neurodegeneration seen in Parkinson’s.

2020 ◽  
Vol 10 (6) ◽  
pp. 1903-1914 ◽  
Author(s):  
Stavroula Petridi ◽  
C. Adam Middleton ◽  
Chris Ugbode ◽  
Alison Fellgett ◽  
Laura Covill ◽  
...  

LRRK2 mutations cause Parkinson’s, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo. We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson’s.


2020 ◽  
Author(s):  
Alison Fellgett ◽  
C. Adam Middleton ◽  
Jack Munns ◽  
Chris Ugbode ◽  
David Jaciuch ◽  
...  

AbstractBackgroundInherited mutations in the LRRK2 protein are the most common known cause of Parkinson’s, but the mechanisms by which increased kinase activity of mutant LRRK2 leads to pathological events remain to be determined. In vitro assays (heterologous cell culture, phospho-protein mass spectrometry) suggest that several Rab proteins might be directly phosphorylated by LRRK2-G2019S. Which Rabs interact with LRRK2 in dopaminergic neurons to facilitate normal and pathological physiological responses remains to be determined. An in vivo screen of Rab expression in dopaminergic neurons in young adult Drosophila demonstrated a strong genetic interaction between LRRK2-G2019S and Rab10. We now ask if Rab10 is required for LRRK2-induced physiological responses in DA neurons.MethodsLRRK2-G2019S was expressed in Drosophila dopaminergic neurons and the effects of Rab10 depletion on Proboscis Extension, vision, circadian activity pattern and courtship memory determined in aged flies.ResultsRab10 loss-of-function rescued bradykinesia of the Proboscis Extension Response (PER) and visual defects of aged flies expressing LRRK2-G2019S in DA neurons. Rab10 knock-down however, did not rescue the marked sleep phenotype which results from dopaminergic expression of LRRK2-G2019S. Courtship memory is not affected by LRRK2 expression, but is markedly improved by Rab10 depletion. Anatomically, both LRRK2-G2019S and Rab10 are seen in the cytoplasm and at the synaptic endings of dopaminergic neurons.ConclusionsWe conclude that, in Drosophila dopaminergic neurons, Rab10 is involved differentially in LRRK2-induced behavioral deficits. Therefore, variations in Rab expression may contribute to susceptibility of different dopaminergic nuclei to neurodegeneration seen in people with Parkinson’s.Graphical AbstractRab10 depletion ameliorates the proboscis extension bradykinesia and loss of synaptic signalling in the retina induced by LRRK2-G2019S expression (magenta arrows / orange crosses). Rab10 manipulation does not affect the ‘sleep’ phenotype from LRRK2-G2019S (magenta arrow). Reduction of Rab10 facilitates conditioned courtship memory, but LRRK2 has no effect (yellow arrow). All manipulations of Rab10 and G2019S in dopaminergic neurons, shown in the outline of the brain (filled cells have high levels of Rab10). We conclude that Rab10 and LRRK2 interact in some, but not all dopaminergic neurons. This may underlie differences in the susceptibility of different human striatal dopaminergic cells to Parkinson’s and explain why different symptoms initiate particular ages.


2020 ◽  
Author(s):  
Stavroula Petridi ◽  
C. Adam Middleton ◽  
Chris Ugbode ◽  
Alison Fellgett ◽  
Laura Covill ◽  
...  

AbstractLRRK2 mutations cause Parkinson’s, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo. We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson’s.


2021 ◽  
pp. 1-16
Author(s):  
Alison Fellgett ◽  
C. Adam Middleton ◽  
Jack Munns ◽  
Chris Ugbode ◽  
David Jaciuch ◽  
...  

Background: Inherited mutations in the LRRK2 protein are the common causes of Parkinson’s disease, but the mechanisms by which increased kinase activity of mutant LRRK2 leads to pathological events remain to be determined. In vitro assays (heterologous cell culture, phospho-protein mass spectrometry) suggest that several Rab proteins might be directly phosphorylated by LRRK2-G2019S. An in vivo screen of Rab expression in dopaminergic neurons in young adult Drosophila demonstrated a strong genetic interaction between LRRK2-G2019S and Rab10. Objective: To determine if Rab10 is necessary for LRRK2-induced pathophysiological responses in the neurons that control movement, vision, circadian activity, and memory. These four systems were chosen because they are modulated by dopaminergic neurons in both humans and flies. Methods: LRRK2-G2019S was expressed in Drosophila dopaminergic neurons and the effects of Rab10 depletion on Proboscis Extension, retinal neurophysiology, circadian activity pattern (‘sleep’), and courtship memory determined in aged flies. Results: Rab10 loss-of-function rescued LRRK2-G2019S induced bradykinesia and retinal signaling deficits. Rab10 knock-down, however, did not rescue the marked sleep phenotype which results from dopaminergic LRRK2-G2019S. Courtship memory is not affected by LRRK2, but is markedly improved by Rab10 depletion. Anatomically, both LRRK2-G2019S and Rab10 are seen in the cytoplasm and at the synaptic endings of dopaminergic neurons. Conclusion: We conclude that, in Drosophila dopaminergic neurons, Rab10 is involved in some, but not all, LRRK2-induced behavioral deficits. Therefore, variations in Rab expression may contribute to susceptibility of different dopaminergic nuclei to neurodegeneration seen in people with Parkinson’s disease.


2018 ◽  
Author(s):  
Markus Riessland ◽  
Benjamin Kolisnyk ◽  
Tae Wan Kim ◽  
Jia Cheng ◽  
Jason Ni ◽  
...  

AbstractCellular senescence is a mechanism used by mitotic cells to prevent uncontrolled cell division. As senescent cells persist in tissues, they cause local inflammation and are harmful to surrounding cells, contributing to aging. Generally, neurodegenerative diseases, such as Parkinson‘s, are disorders of aging. The contribution of cellular senescence to neurodegeneration is still unclear. SATB1 is a DNA binding protein associated with Parkinson’s disease. We report that SATB1 prevents cellular senescence in post-mitotic dopaminergic neurons. Loss of SATB1 causes activation of a cellular senescence transcriptional program in dopamine neurons, both in human stem cell-derived dopaminergic neurons and in mice. We observed phenotypes which are central to cellular senescence in SATB1 knockout dopamine neurons in vitro and in vivo. Moreover, we found that SATB1 directly represses expression of the pro-senescence factor, p21, in dopaminergic neurons. Our data implicate senescence of dopamine neurons as a contributing factor to the pathology of Parkinson’s disease.


2020 ◽  
Vol 477 (9) ◽  
pp. 1651-1668 ◽  
Author(s):  
Sophie Vieweg ◽  
Katie Mulholland ◽  
Bastian Bräuning ◽  
Nitin Kachariya ◽  
Yu-Chiang Lai ◽  
...  

Loss of function mutations in the PTEN-induced kinase 1 (PINK1) kinase are causal for autosomal recessive Parkinson's disease (PD) whilst gain of function mutations in the LRRK2 kinase cause autosomal dominant PD. PINK1 indirectly regulates the phosphorylation of a subset of Rab GTPases at a conserved Serine111 (Ser111) residue within the SF3 motif. Using genetic code expansion technologies, we have produced stoichiometric Ser111-phosphorylated Rab8A revealing impaired interactions with its cognate guanine nucleotide exchange factor and GTPase activating protein. In a screen for Rab8A kinases we identify TAK1 and MST3 kinases that can efficiently phosphorylate the Switch II residue Threonine72 (Thr72) in a similar manner as LRRK2 in vitro. Strikingly, we demonstrate that Ser111 phosphorylation negatively regulates the ability of LRRK2 but not MST3 or TAK1 to phosphorylate Thr72 of recombinant nucleotide-bound Rab8A in vitro and demonstrate an interplay of PINK1- and LRRK2-mediated phosphorylation of Rab8A in transfected HEK293 cells. Finally, we present the crystal structure of Ser111-phosphorylated Rab8A and nuclear magnetic resonance structure of Ser111-phosphorylated Rab1B. The structures reveal that the phosphorylated SF3 motif does not induce any major changes, but may interfere with effector-Switch II interactions through intramolecular H-bond formation and/or charge effects with Arg79. Overall, we demonstrate antagonistic regulation between PINK1-dependent Ser111 phosphorylation and LRRK2-mediated Thr72 phosphorylation of Rab8A indicating a potential cross-talk between PINK1-regulated mitochondrial homeostasis and LRRK2 signalling that requires further investigation in vivo.


2010 ◽  
Vol 104 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Hyo Geun Kim ◽  
Mi Sun Ju ◽  
Jin Sup Shim ◽  
Min Cheol Kim ◽  
Sang-Hun Lee ◽  
...  

Parkinson's disease (PD), one of the most common neurodegenerative disorders, is characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) to the striatum (ST), and involves oxidative stress. Mulberry fruit fromMorus albaL. (Moraceae) is commonly eaten, and has long been used in traditional oriental medicine. It contains well-known antioxidant agents such as anthocyanins. The present study examined the protective effects of 70 % ethanol extract of mulberry fruit (ME) against neurotoxicity inin vitroandin vivoPD models. In SH-SY5Y cells stressed with 6-hydroxydopamine (6-OHDA), ME significantly protected the cells from neurotoxicity in a dose-dependent manner. Other assays demonstrated that the protective effect of ME was mediated by its antioxidant and anti-apoptotic effects, regulating reactive oxygen species and NO generation, Bcl-2 and Bax proteins, mitochondrial membrane depolarisation and caspase-3 activation. In mesencephalic primary cells stressed with 6-OHDA or 1-methyl-4-phenylpyridinium (MPP+), pre-treatment with ME also protected dopamine neurons, showing a wide range of effective concentrations in MPP+-induced toxicity. In the sub-acute mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), ME showed a preventative effect against PD-like symptoms (bradykinesia) in the behavioural test and prevented MPTP-induced dopaminergic neuronal damage in an immunocytochemical analysis of the SNpc and ST. These results indicate that ME has neuroprotective effects inin vitroandin vivoPD models, and that it may be useful in preventing or treating PD.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Abeer Dagra ◽  
Douglas R. Miller ◽  
Min Lin ◽  
Adithya Gopinath ◽  
Fatemeh Shaerzadeh ◽  
...  

AbstractPathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson’s disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson’s disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson’s disease progression with significant therapeutic implications.


2021 ◽  
pp. 1-24
Author(s):  
Juho-Matti Renko ◽  
Arun Kumar Mahato ◽  
Tanel Visnapuu ◽  
Konsta Valkonen ◽  
Mati Karelson ◽  
...  

Background: Parkinson’s disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF’s receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP +-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and could have protected dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying therapy for PD.


Sign in / Sign up

Export Citation Format

Share Document