scholarly journals During hippocampal inactivation, grid cells maintain their synchrony, even when the grid pattern is lost

2019 ◽  
Author(s):  
Noam Almog ◽  
Gilad Tocker ◽  
Tora Bonnevie ◽  
Edvard Moser ◽  
May-Britt Moser ◽  
...  

AbstractThe grid cell network in the MEC has been subject to thorough testing and analysis, and many theories for their formation have been suggested. To test some of these theories we re-analyzed data from Bonnevie et al. (2013), in which the hippocampus was inactivated and grid cells were recorded in the MEC, to investigate whether the firing associations of grid cells depend on hippocampal inputs. Specifically, we examined temporal and spatial correlations in the firing times of simultaneously recorded grid cells before and during hippocampal inactivation. Our analysis revealed evidence of network coherence in grid cells even in the absence of hippocampal input to the MEC, both in regular grid cells and in those that became head-direction cells after hippocampal inactivation. This favors models which suggest that phase relations between grid cells in the MEC are dependent on intrinsic connectivity within the MEC.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Noam Almog ◽  
Gilad Tocker ◽  
Tora Bonnevie ◽  
Edvard I Moser ◽  
May-Britt Moser ◽  
...  

The grid cell network in the medial entorhinal cortex (MEC) has been subject to thorough testing and analysis, and many theories for their formation have been suggested. To test some of these theories, we re-analyzed data from Bonnevie et al., 2013, in which the hippocampus was inactivated and grid cells were recorded in the rat MEC. We investigated whether the firing associations of grid cells depend on hippocampal inputs. Specifically, we examined temporal and spatial correlations in the firing times of simultaneously recorded grid cells before and during hippocampal inactivation. Our analysis revealed evidence of network coherence in grid cells even in the absence of hippocampal input to the MEC, both in regular grid cells and in those that became head-direction cells after hippocampal inactivation. This favors models, which suggest that phase relations between grid cells in the MEC are dependent on intrinsic connectivity within the MEC.


2017 ◽  
Author(s):  
Richard J. Gardner ◽  
Li Lu ◽  
Tanja Wernle ◽  
May-Britt Moser ◽  
Edvard I. Moser

AbstractThe network of grid cells in the medial entorhinal cortex forms a fixed reference frame for mapping physical space. The mechanistic origin of the grid representation is unknown, but continuous attractor network (CAN) models explain multiple fundamental features of grid-cell activity. An untested prediction of CAN grid models is that the grid-cell network should exhibit an activity correlation structure that transcends behavioural or brain states. By recording from MEC cell ensembles during navigation and sleep, we found that spatial phase offsets of grid cells predict arousal-state-independent spike rate correlations. Similarly, state-invariant correlations between conjunctive grid-head-direction and pure head-direction cells were predicted by their head-direction tuning offsets. Spike rates of grid cells were only weakly correlated across modules, and module scale relationships disintegrated during slow-save sleep, suggesting that modules function as independent attractor networks. Collectively, our observations suggest that network states in MEC are expressed universally across brain and behaviour states.


2020 ◽  
Vol 123 (4) ◽  
pp. 1392-1406 ◽  
Author(s):  
Juan Ignacio Sanguinetti-Scheck ◽  
Michael Brecht

The home is a unique location in the life of humans and animals. In rats, home presents itself as a multicompartmental space that involves integrating navigation through subspaces. Here we embedded the laboratory rat’s home cage in the arena, while recording neurons in the animal’s parasubiculum and medial entorhinal cortex, two brain areas encoding the animal’s location and head direction. We found that head direction signals were unaffected by home cage presence or translocation. Head direction cells remain globally stable and have similar properties inside and outside the embedded home. We did not observe egocentric bearing encoding of the home cage. However, grid cells were distorted in the presence of the home cage. While they did not globally remap, single firing fields were translocated toward the home. These effects appeared to be geometrical in nature rather than a home-specific distortion and were not dependent on explicit behavioral use of the home cage during a hoarding task. Our work suggests that medial entorhinal cortex and parasubiculum do not remap after embedding the home, but local changes in grid cell activity overrepresent the embedded space location and might contribute to navigation in complex environments. NEW & NOTEWORTHY Neural findings in the field of spatial navigation come mostly from an abstract approach that separates the animal from even a minimally biological context. In this article we embed the home cage of the rat in the environment to address some of the complexities of natural navigation. We find no explicit home cage representation. While both head direction cells and grid cells remain globally stable, we find that embedded spaces locally distort grid cells.


2019 ◽  
Author(s):  
Juan Ignacio Sanguinetti-Scheck ◽  
Michael Brecht

AbstractThe home is a unique location in the life of humans and animals. Numerous behavioral studies investigating homing indicate that many animals maintain an online representation of the direction of the home, a home vector. Here we placed the rat’s home cage in the arena, while recording neurons in the animal’s parasubiculum and medial entorhinal cortex. From a pellet hoarding paradigm it became evident that the home cage induced locomotion patterns characteristic of homing behaviors. We did not observe home-vector cells. We found that head-direction signals were unaffected by home location. However, grid cells were distorted in the presence of the home cage. While they did not globally remap, single firing fields were translocated towards the home. These effects appeared to be geometrical in nature rather than a home-specific distortion. Our work suggests that medial entorhinal cortex and parasubiculum do not contain an explicit neural representation of the home direction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenjing Wang ◽  
Wenxu Wang

AbstractThe regular equilateral triangular periodic firing pattern of grid cells in the entorhinal cortex is considered a regular metric for the spatial world, and the grid-like representation correlates with hexadirectional modulation of theta (4–8 Hz) power in the entorhinal cortex relative to the moving direction. However, researchers have not clearly determined whether grid cells provide only simple spatial measures in human behavior-related navigation strategies or include other factors such as goal rewards to encode information in multiple patterns. By analysing the hexadirectional modulation of EEG signals in the theta band in the entorhinal cortex of patients with epilepsy performing spatial target navigation tasks, we found that this modulation presents a grid pattern that carries target-related reward information. This grid-like representation is influenced by explicit goals and is related to the local characteristics of the environment. This study provides evidence that human grid cell population activity is influenced by reward information at the level of neural oscillations.


Nature ◽  
2022 ◽  
Author(s):  
Richard J. Gardner ◽  
Erik Hermansen ◽  
Marius Pachitariu ◽  
Yoram Burak ◽  
Nils A. Baas ◽  
...  

AbstractThe medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal’s allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8–11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.


2019 ◽  
Vol 116 (10) ◽  
pp. 4631-4636 ◽  
Author(s):  
Giulio Casali ◽  
Daniel Bush ◽  
Kate Jeffery

Entorhinal grid cells integrate sensory and self-motion inputs to provide a spatial metric of a characteristic scale. One function of this metric may be to help localize the firing fields of hippocampal place cells during formation and use of the hippocampal spatial representation (“cognitive map”). Of theoretical importance is the question of how this metric, and the resulting map, is configured in 3D space. We find here that when the body plane is vertical as rats climb a wall, grid cells produce stable, almost-circular grid-cell firing fields. This contrasts with previous findings when the body was aligned horizontally during vertical exploration, suggesting a role for the body plane in orienting the plane of the grid cell map. However, in the present experiment, the fields on the wall were fewer and larger, suggesting an altered or absent odometric (distance-measuring) process. Several physiological indices of running speed in the entorhinal cortex showed reduced gain, which may explain the enlarged grid pattern. Hippocampal place fields were found to be sparser but unchanged in size/shape. Together, these observations suggest that the orientation and scale of the grid cell map, at least on a surface, are determined by an interaction between egocentric information (the body plane) and allocentric information (the gravity axis). This may be mediated by the different sensory or locomotor information available on a vertical surface and means that the resulting map has different properties on a vertical plane than a horizontal plane (i.e., is anisotropic).


2019 ◽  
Vol 8 (1) ◽  
pp. 35 ◽  
Author(s):  
YuanJian Tian ◽  
Qi Zhou ◽  
Xiaolin Fu

OpenStreetMap (OSM) is a free map that can be created, edited, and updated by volunteers globally. The quality of OSM datasets is therefore of great concern. Extensive studies have focused on assessing the completeness (a quality measure) of OSM datasets in various countries, but very few have been paid attention to investigating the OSM building dataset in China. This study aims to present an analysis of the evolution, completeness and spatial patterns of OSM building data in China across the years 2012 to 2017. This is done using two quality indicators, OSM building count and OSM building density, although a corresponding reference dataset for the whole country is not freely available. Development of OSM building counts from 2012 to 2017 is analyzed in terms of provincial- and prefecture-level divisions. Factors that may affect the development of OSM building data in China are also analyzed. A 1 × 1 km2 regular grid is overlapped onto urban areas of each prefecture-level division, and the OSM building density of each grid cell is calculated. Spatial distributions of high-density grid cells for prefecture-level divisions are analyzed. Results show that: (1) the OSM building count increases by almost 20 times from 2012 to 2017, and in most cases, economic (gross domestic product) and OSM road length are two factors that may influence the development of OSM building data in China; (2) most grid cells in urban areas do not have any building data, but two typical patterns (dispersion and aggregation) of high-density grid cells are found among prefecture-level divisions.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Alexandra T Keinath ◽  
Russell A Epstein ◽  
Vijay Balasubramanian

In familiar environments, the firing fields of entorhinal grid cells form regular triangular lattices. However, when the geometric shape of the environment is deformed, these time-averaged grid patterns are distorted in a grid scale-dependent and local manner. We hypothesized that this distortion in part reflects dynamic anchoring of the grid code to displaced boundaries, possibly through border cell-grid cell interactions. To test this hypothesis, we first reanalyzed two existing rodent grid rescaling datasets to identify previously unrecognized boundary-tethered shifts in grid phase that contribute to the appearance of rescaling. We then demonstrated in a computational model that boundary-tethered phase shifts, as well as scale-dependent and local distortions of the time-averaged grid pattern, could emerge from border-grid interactions without altering inherent grid scale. Together, these results demonstrate that environmental deformations induce history-dependent shifts in grid phase, and implicate border-grid interactions as a potential mechanism underlying these dynamics.


2021 ◽  
Author(s):  
Horst A. Obenhaus ◽  
Weijian Zong ◽  
R. Irene Jacobsen ◽  
Tobias Rose ◽  
Flavio Donato ◽  
...  

SummaryThe medial entorhinal cortex (MEC) creates a map of local space, based on the firing patterns of grid, head direction (HD), border, and object-vector (OV) cells. How these cell types are organized anatomically is debated. In-depth analysis of this question requires collection of precise anatomical and activity data across large populations of neurons during unrestrained behavior, which neither electrophysiological nor previous imaging methods fully afford. Here we examined the topographic arrangement of spatially modulated neurons in MEC and adjacent parasubiculum using miniaturized, portable two-photon microscopes, which allow mice to roam freely in open fields. Grid cells exhibited low levels of co-occurrence with OV cells and clustered anatomically, while border, HD and OV cells tended to intermingle. These data suggest that grid-cell networks might be largely distinct from those of border, HD and OV cells and that grid cells exhibit strong coupling among themselves but weaker links to other cell types.Highlights- Grid and object vector cells show low levels of regional co-occurrence- Grid cells exhibit the strongest tendency to cluster among all spatial cell types- Grid cells stay separate from border, head direction and object vector cells- The territories of grid, head direction and border cells remain stable over weeks


Sign in / Sign up

Export Citation Format

Share Document