scholarly journals Assessing the viability of biochemical networks across planets

2019 ◽  
Author(s):  
Harrison B. Smith ◽  
Alexa Drew ◽  
Sara I. Walker

AbstractThe concept of the origin of life implies that initially, life emerged from a non-living medium. If this medium was Earth’s geochemistry, then that would make life, by definition, a geochemical process. The extent to which life on Earth today could subsist outside of the geochemistry from which it is embedded is poorly quantified. By leveraging large biochemical datasets in conjunction with planetary observations and computational tools, this research provides a methodological foundation for the quantitative assessment of our biology’s viability in the context of other geospheres. Investigating a case study of alkaline prokaryotes in the context of Enceladus, we find that the chemical compounds observed on Enceladus thus far would be insufficient to allow even these extremophiles to produce the compounds necessary to sustain a viable metabolism. The environmental precursors required by these organisms provides a map for the compounds which should be prioritized for detection in future planetary exploration missions. The results of this framework have further consequences in the context of planetary protection, and hint that forward contamination may prove infeasible without meticulous intent.

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 690
Author(s):  
Clifford F. Brunk ◽  
Charles R. Marshall

While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life’s origin(s). However, the dimensionality of non-equilibrium chemical systems, from the range of possible boundary conditions and chemical interactions, renders the application of chemical and physical laws difficult. Here we outline a set of simple criteria for evaluating OoLoE scenarios. These include the need for containment, steady energy and material flows, and structured spatial heterogeneity from the outset. The Principle of Continuity, the fact that all life today was derived from first life, suggests favoring scenarios with fewer non-analog (not seen in life today) to analog (seen in life today) transitions in the inferred first biochemical pathways. Top-down data also indicate that a complex metabolism predated ribozymes and enzymes, and that full cellular autonomy and motility occurred post-LUCA. Using these criteria, we find the alkaline hydrothermal vent microchamber complex scenario with a late evolving exploitation of the natural occurring pH (or Na+ gradient) by ATP synthase the most compelling. However, there are as yet so many unknowns, we also advocate for the continued development of as many plausible scenarios as possible.


2019 ◽  
Vol 95 (10) ◽  
Author(s):  
Jose V Lopez ◽  
Raquel S Peixoto ◽  
Alexandre S Rosado

ABSTRACT Based on modern microbiology, we propose a major revision in current space exploration philosophy and planetary protection policy, especially regarding microorganisms in space. Mainly, microbial introduction should not be considered accidental but inevitable. We hypothesize the near impossibility of exploring new planets without carrying and/or delivering any microbial travelers. In addition, although we highlight the importance of controlling and tracking such contaminations—to explore the existence of extraterrestrial microorganisms—we also believe that we must discuss the role of microbes as primary colonists and assets, rather than serendipitous accidents, for future plans of extraterrestrial colonization. This paradigm shift stems partly from the overwhelming evidence of microorganisms’ diverse roles in sustaining life on Earth, such as symbioses and ecosystem services (decomposition, atmosphere effects, nitrogen fixation, etc.). Therefore, we propose a framework for new discussion based on the scientific implications of future colonization and terraforming: (i) focus on methods to track and avoid accidental delivery of Earth's harmful microorganisms and genes to extraterrestrial areas; (ii) begin a rigorous program to develop and explore ‘Proactive Inoculation Protocols’. We outline a rationale and solicit feedback to drive a public and private research agenda that optimizes diverse organisms for potential space colonization.


2007 ◽  
Vol 362 (1486) ◽  
pp. 1727-1739 ◽  
Author(s):  
Ricard V Solé ◽  
Andreea Munteanu ◽  
Carlos Rodriguez-Caso ◽  
Javier Macía

Cells are the building blocks of biological complexity. They are complex systems sustained by the coordinated cooperative dynamics of several biochemical networks. Their replication, adaptation and computational features emerge as a consequence of appropriate molecular feedbacks that somehow define what life is. As the last decades have brought the transition from the description-driven biology to the synthesis-driven biology, one great challenge shared by both the fields of bioengineering and the origin of life is to find the appropriate conditions under which living cellular structures can effectively emerge and persist. Here, we review current knowledge (both theoretical and experimental) on possible scenarios of artificial cell design and their future challenges.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012116
Author(s):  
Pierson Clotilde ◽  
Soto Magán Victoria Eugenia ◽  
Aarts Mariëlle ◽  
Andersen Marilyne

Abstract Recent developments in the lighting research field have demonstrated the importance of a proper exposure to light to mediate several of our behavioral and physiological responses. However, we spend nowadays around 90% of our time indoors with an often quite limited access to bright daylight. To be able to anticipate how much the built environment actually influences our light exposure, and how much it may ultimately impact our health, well-being, and productivity, new computational tools are needed. In this paper, we present a first attempt at a simulation workflow that integrates a spectral simulation tool with a light-driven prediction model of alertness. The goal is to optimize the effects of light on building occupants, by informing the decision makers about the impact of different design choices. The workflow is applied to a case study to provide an example of what learnings can be expected from it.


2013 ◽  
Vol 47 (1) ◽  
pp. 449
Author(s):  
B. Tsikouras ◽  
G. Etiope ◽  
E. Ifandi ◽  
S. Kordella ◽  
G. Papatheodorou ◽  
...  

Altered mafic and ultramafic rocks were studied in correspondence with hyperalkaline, CH4-bearing and very low-hydrogen spring waters in the Othrys ophiolite, whose chemical features are typical of present day serpentinisation. The H2 paucity is interpreted as the result of the incorporation of high-silica, aqueous fluids, probably derived from mafic rocks. The vein assemblage of serpentine + magnetite is related to circulation of low-silica fluids whereas serpentine + talc, tremolite after garnet and Fe-rich serpentine in the interior of serpentine veins reflect a late circulation of low-temperature (likely below 120 °C), high silica activity fluids. The highsilica conditions might have limited or interrupted the production of H2, which was subsequently consumed by CO2 hydrogenation to produce CH4. The lack of H2 could also be due to peridotite alteration by CO2-rich fluids. This would imply that the Othrys peridotites, among similar methane-bearing peridotites, may be considered as terrestrial analogues of Martian ultramafic rocks, which are thought to contribute to methane emission in the atmosphere of Mars. Understanding the mechanism of methane abiotic production will likely shed light to the details of some crucial aspects as the greenhouse-gas budget, the production of hydrocarbons and the origin of life on Earth.


Sign in / Sign up

Export Citation Format

Share Document