scholarly journals Intermanual transfer of visuomotor adaptation is related to awareness

2019 ◽  
Author(s):  
Susen Werner ◽  
Heiko K. Strüder ◽  
Opher Donchin

AbstractPrevious studies compared the effects of gradual and sudden adaptation on intermanual transfer to find out whether transfer depends on awareness of the perturbation. Results from different groups were contradictory. Since results of our own study suggest that awareness depends on perturbation size, we hypothesize that awareness-related intermanual transfer will only appear after adaptation to a large, sudden perturbation but not after adaptation to a small sudden perturbation or a gradual perturbation, large or small. To confirm this, four groups (S30, G30, S75, G75) of subjects performed out-and-back reaching movements with their right arm. In a baseline block, they received veridical visual feedback of hand position. In the subsequent adaptation block, feedback was rotated by 30 deg (S30, G30) or 75 deg (S75, G75). This rotation was either introduced suddenly (S30, S75) or gradually in steps of 3 deg (G30, G75). After the adaptation block, subjects did an awareness test comprising exclusion and inclusion conditions. The experiment concluded with an intermanual transfer block, in which movements were performed with the left arm under rotated feedback, and a washout block again under veridical feedback. We used a hierarchical Bayesian model to estimate individual movement directions and group averages. The movement directions in different conditions were then used to calculate group and individual indexes of adaptation, awareness, unawareness, transfer and washout. Both awareness and transfer were larger in S75 than in other groups, while unawareness and washout were smaller in S75 than in other groups. Furthermore, the size of awareness indices correlated to intermanual transfer across subjects, even when transfer was normalized to final adaptation level. Thus, we show for the first time that the amount of intermanual transfer directly relates to the extent of awareness of the learned perturbation.

2018 ◽  
Author(s):  
Shanaathanan Modchalingam ◽  
Chad Vachon ◽  
Bernard Marius 't Hart ◽  
Denise Henriques

Awareness of task demands is often used during rehabilitation and sports training by providing instructions which appears to accelerate learning and improve performance through explicit motor learning. However, the effects of awareness of perturbations on the changes in estimates of hand position resulting from motor learning are not well understood. In this study, people adapted their reaches to a visuomotor rotation while either receiving instructions on the nature of the perturbation, experiencing a large rotation, or both to generate awareness of the perturbation and increase the contribution of explicit learning. We found that instructions and/or larger rotations allowed people to activate or deactivate part of the learned strategy at will and elicited explicit changes in open-loop reaches, while a small rotation without instructions did not. However, these differences in awareness, and even manipulations of awareness and perturbation size, did not appear to affect learning-induced changes in hand-localization estimates. This was true when estimates of the adapted hand location reflected changes in proprioception, produced when the hand was displaced by a robot, and also when hand location estimates were based on efferent-based predictions of self-generated hand movements. In other words, visuomotor adaptation led to significant shifts in predicted and perceived hand location that were not modulated by either instruction or perturbation size. Our results indicate that not all outcomes of motor learning benefit from an explicit awareness of the task. Particularly, proprioceptive recalibration and the updating of predicted sensory consequences appear to be largely implicit. (data: DOI 10.17605/OSF.IO/MX5U2, preprint: DOI[url])


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chantriolnt-Andreas Kapourani ◽  
Ricard Argelaguet ◽  
Guido Sanguinetti ◽  
Catalina A. Vallejos

AbstractHigh-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression. scMET is available at https://github.com/andreaskapou/scMET.


Genetics ◽  
2021 ◽  
Vol 217 (2) ◽  
Author(s):  
L E Puhl ◽  
J Crossa ◽  
S Munilla ◽  
P Pérez-Rodríguez ◽  
R J C Cantet

Abstract Cultivated bread wheat (Triticum aestivum L.) is an allohexaploid species resulting from the natural hybridization and chromosome doubling of allotetraploid durum wheat (T. turgidum) and a diploid goatgrass Aegilops tauschii Coss (Ae. tauschii). Synthetic hexaploid wheat (SHW) was developed through the interspecific hybridization of Ae. tauschii and T. turgidum, and then crossed to T. aestivum to produce synthetic hexaploid wheat derivatives (SHWDs). Owing to this founding variability, one may infer that the genetic variances of native wild populations vs improved wheat may vary due to their differential origin and evolutionary history. In this study, we partitioned the additive variance of SHW and SHWD with respect to their breed origin by fitting a hierarchical Bayesian model with heterogeneous covariance structure for breeding values to estimate variance components for each breed category, and segregation variance. Two data sets were used to test the proposed hierarchical Bayesian model, one from a multi-year multi-location field trial of SHWD and the other comprising the two species of SHW. For the SHWD, the Bayesian estimates of additive variances of grain yield from each breed category were similar for T. turgidum and Ae. tauschii, but smaller for T. aestivum. Segregation variances between Ae. tauschii—T. aestivum and T. turgidum—T. aestivum populations explained a sizable proportion of the phenotypic variance. Bayesian additive variance components and the Best Linear Unbiased Predictors (BLUPs) estimated by two well-known software programs were similar for multi-breed origin and for the sum of the breeding values by origin for both data sets. Our results support the suitability of models with heterogeneous additive genetic variances to predict breeding values in wheat crosses with variable ploidy levels.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Osamu Kagawa ◽  
◽  
Shota Uchida ◽  
Daishi Yamazaki ◽  
Yumiko Osawa ◽  
...  

AbstractEnvironmental factors promote symbiosis, but its mechanism is not yet well understood. The alga Pseudocladophora conchopheria grows only on the shell of an intertidal gastropod Lunella correensis, and these species have a close symbiotic relationship which the alga reduces heat stress of the gastropod. In collaboration with general public, we investigated how environmental conditions alter the symbiotic interaction between the alga and the gastropod. Information about the habitats of each gastropod and images of shells was obtained from the Japanese and Korean coasts via social media. We constructed the hierarchical Bayesian model using the data. The results indicated that the proportion of shell area covered by P. conchopheria increased as the substrate size utilized by the gastropod increased. Meanwhile, temperature did not affect the proportion of P. conchopheria on the shell. These suggested that the alga provides no benefits for the gastropod on small substrates because gastropod can reduce the heat stress by diving into the small sediment. Further, the gastropod’s cost incurred by growing the alga on the shell seems to be low as the algae can grow even in cooler places where no benefits of heat resistance for gastropods. Different environments can yield variable conditions in symbiosis.


Sign in / Sign up

Export Citation Format

Share Document