scholarly journals Experimental evidence of invasion facilitation in the zebra mussel-killer shrimp system

2019 ◽  
Author(s):  
Matteo Rolla ◽  
Sofia Consuegra ◽  
Ellie Carrington ◽  
David Hall ◽  
Carlos Garcia de Leaniz

AbstractInvasion facilitation, whereby one species has a positive effect on the establishment of another species, could help explain the rapid colonisation shown by some freshwater invasive species, but the underlying mechanisms remain unclear. We employed two-choice test arenas to test whether the presence of zebra mussel (Dreissena polymorpha) could facilitate the establishment of the killer shrimp (Dikerogammarus villosus). Killer shrimp preferred to settle on mats of zebra mussel, but this was unrelated to mat size, and was not different from attraction shown to artificial grass, suggesting that zebra mussel primarily provides substrate and refuge to the killer shrimp. Killer shrimp were strongly attracted to water scented by zebra mussel, but not to water scented by fish. Chemical attraction to the zebra mussel’s scent did not differ between sympatric and allopatric populations of killer shrimp, suggesting that chemical facilitation is not an acquired or learned trait. Our results have implications for managing the spread of killer shrimp, and perhaps other freshwater invasive species, because invasion facilitation could significantly increase establishment success. Failure to consider invasion facilitation may underestimate the risk of establishment and likely impact of some aquatic invaders.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8075
Author(s):  
Matteo Rolla ◽  
Sofia Consuegra ◽  
Eleanor Carrington ◽  
David J. Hall ◽  
Carlos Garcia de Leaniz

Invasion facilitation, whereby one species has a positive effect on the establishment of another species, could help explain the rapid colonisation shown by some freshwater invasive species, but the underlying mechanisms remain unclear. We employed two-choice test arenas to test whether the presence of zebra mussel (Dreissena polymorpha) could facilitate the establishment of the killer shrimp (Dikerogammarus villosus). Killer shrimp preferred to settle on mats of zebra mussel, but this was unrelated to mat size, and was not different from attraction shown to artificial grass, suggesting that zebra mussel primarily provides substrate and refuge to the killer shrimp. Killer shrimp were strongly attracted to water scented by zebra mussel, but not to water scented by fish. Chemical attraction to the zebra mussel’s scent did not differ between sympatric and allopatric populations of killer shrimp, suggesting that chemical attraction is not an acquired or learned trait. Our study shows, for the first time, chemical attraction between two highly invasive freshwater species, thereby providing a plausible mechanism for invasion facilitation. This has implications for managing the spread of killer shrimp, and perhaps other freshwater invasive species, because chemical attraction could significantly increase establishment success in mutualistic systems. Failure to consider invasion facilitation may underestimate the risk of establishment, and likely also the impact of some aquatic invaders.



2018 ◽  
Vol 42 (1) ◽  
pp. 65-68
Author(s):  
L. Peñarrubia ◽  
◽  
J. Viñas ◽  
N. Sanz ◽  
B. L. Smith ◽  
...  


2019 ◽  
Vol 42 (1) ◽  
pp. 65-68 ◽  
Author(s):  
L. Peñarrubia ◽  
◽  
J. Viñas ◽  
N. Sanz ◽  
B. L. Smith ◽  
...  


2019 ◽  
Author(s):  
Michael A. McCartney ◽  
Benjamin Auch ◽  
Thomas Kono ◽  
Sophie Mallez ◽  
Ying Zhang ◽  
...  

AbstractThe zebra mussel, Dreissena polymorpha, continues to spread from its native range in Eurasia to Europe and North America, causing billions of dollars in damage and dramatically altering invaded aquatic ecosystems. Despite these impacts, there are few genomic resources for Dreissena or related bivalves, with nearly 450 million years of divergence between zebra mussels and its closest sequenced relative. Although the D. polymorpha genome is highly repetitive, we have used a combination of long-read sequencing and Hi-C-based scaffolding to generate the highest quality molluscan assembly to date. Through comparative analysis and transcriptomics experiments we have gained insights into processes that likely control the invasive success of zebra mussels, including shell formation, synthesis of byssal threads, and thermal tolerance. We identified multiple intact Steamer-Like Elements, a retrotransposon that has been linked to transmissible cancer in marine clams. We also found that D. polymorpha have an unusual 67 kb mitochondrial genome containing numerous tandem repeats, making it the largest observed in Eumetazoa. Together these findings create a rich resource for invasive species research and control efforts.



2007 ◽  
Vol 274 (1625) ◽  
pp. 2603-2609 ◽  
Author(s):  
Brian Leung ◽  
Nicholas E Mandrak

Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially—propagule pressure is a function of time, whereas invasibility is not—and therefore have different management implications. Further, we use the well-studied zebra mussel ( Dreissena polymorpha ) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model.



Sign in / Sign up

Export Citation Format

Share Document