scholarly journals Biased Signaling: Distinct Ligand-directed Plasma Membrane Signalosomes Using a Common RGS/G protein Core

2019 ◽  
Author(s):  
Timothy J. Ross-Elliott ◽  
Justin Watkins ◽  
Xiaoyi Shan ◽  
Fei Lou ◽  
Bernd Dreyer ◽  
...  

Biased signaling occurs when different ligands that are directed at the same receptor launch different cellular outcomes. Because of their pharmacological importance, we know the most about biased ligands and little is known about other mechanisms to achieve signaling bias. In the canonical animal G protein system, endocytosis of a 7-transmembrane GPCR is mediated by arrestins to propagate or arrest cytoplasmic signaling depending on the bias. In Arabidopsis, GPCRs are not required for G protein coupled signaling because the heterotrimeric G protein complex spontaneously exchanges nucleotide. Instead, the prototype 7-transmembrane Regulator of G Signaling 1 protein AtRGS1 modulates G signaling and through ligand-dependent endocytosis, de-repression of signaling is initiated but canonical arrestins are not involved. Endocytosis initiates from two separate pools of plasma membrane: sterol-dependent domains, possibly lipid rafts, and a clathrin-accessible neighborhood, each with a select set of discriminators, activators, and newly-discovered arrestin-like adaptors. Different trafficking origins and trajectories lead to different cellular outcomes. Thus, compartmentation with its attendant signalosome architecture is a previously unknown mechanism to drive biased signaling.

2020 ◽  
Author(s):  
Heather E. McFarlane ◽  
Daniela Mutwil-Anderwald ◽  
Jana Verbančič ◽  
Kelsey L. Picard ◽  
Timothy E. Gookin ◽  
...  

AbstractCellulose synthesis is essential for plant morphology, water transport and defense, and provides raw material for biomaterials and fuels. Cellulose is produced at the plasma membrane by Cellulose Synthase (CESA) protein complexes (CSCs). CSCs are assembled in the endomembrane system and then trafficked from the Golgi apparatus and trans-Golgi Network (TGN) to the plasma membrane. Since CESA enzymes are only active in the plasma membrane, control of CSC secretion is a critical step in the regulation of cellulose synthesis. However, the regulatory framework for CSC secretion is not clarified. In this study, we identify members of a family of seven transmembrane domain-containing proteins (7TMs) as important for cellulose production during cell wall integrity stress. 7TM proteins are often associated with guanine nucleotide-binding protein (G) protein signalling and mutants in several of the canonical G protein complex components phenocopied the 7tm mutant plants. Unexpectedly, the 7TM proteins localized to the Golgi apparatus/TGN where they interacted with the G protein complex. Here, the 7TMs and G proteins regulated CESA trafficking, but did not affect general protein secretion. Furthermore, during cell wall stress, 7TMs’ localization was biased towards small CESA-containing vesicles, specifically associated with CSC trafficking. Our results thus outline how a G protein-coupled module regulates CESA trafficking and reveal that defects in this process lead to exacerbated responses upon exposure to cell wall integrity stress.


Endocrinology ◽  
2007 ◽  
Vol 148 (7) ◽  
pp. 3164-3175 ◽  
Author(s):  
R. Latif ◽  
T. Ando ◽  
T. F. Davies

The TSH receptor (TSHR), a heptahelical G protein-coupled receptor on the surface of thyrocytes, is a major autoantigen and physiological regulator of the thyroid gland. Unlike other G protein-coupled receptors, the TSHR undergoes posttranslational cleavage of its ectodomain, leading to the existence of several forms of the receptor on the plasma membrane. We previously hypothesized that to achieve high fidelity and specificity of TSH ligand or TSHR autoantibody signaling, the TSHR may compartmentalize into microdomains within the plasma membrane. In support of this hypothesis we have shown previously that TSHRs reside in GM1 ganglioside-enriched lipid rafts in the plasma membrane of TSHR-expressing cells. In this study, we further explored the different forms of TSHRs that reside in lipid rafts. We studied both TSHR-transfected cells and rat thyrocytes, using both nondetergent biochemical analyses and receptor-lipid raft colocalization. Using the biochemical approach, we observed that monomeric receptors existed in both raft and nonraft fractions of the cell surface in the steady state. We also demonstrated that the multimeric forms of the receptor were preferentially partitioned into the lipid microdomains. Different TSHR forms, including multimers, were dynamically regulated both by receptor-specific and postreceptor-specific modulators. TSH ligand and TSHR antibody of the stimulating variety induced a decrease of multimeric forms in the raft fractions. In addition, multimeric and monomeric forms of the receptor were both associated with Gsα within and without the rafts. Although failure to achieve total lipid raft disruption prevented a conclusion regarding the relative power of TSHR signaling within and without the raft domains, these data showed clearly that not only were a significant proportion of TSHRs residing within lipid microdomains but that constitutive multimerization of TSHRs was actually regulated within the lipid rafts.


2018 ◽  
Author(s):  
Jimi C. Miller ◽  
Stacey A. Lawrence ◽  
Nicole K. Clay

ABSTRACTFLAGELLIN-SENSITIVE 2 (FLS2) is a plant immune receptor that binds bacterial flagellin to activate immune signaling. This immune signal is transduced by a heterotrimeric G protein complex at the plasma membrane and activates downstream signaling. However, it is unknown whether the heterotrimeric G proteins have functions at other subcellular locations away from the plasma membrane. Here, we show that components of the heterotrimeric G protein complex stabilize FLS2 protein levels by inhibiting the autophagic degradation of FLS2. Using genetic analysis, we determined that mutations of G protein components resulted in reduced immune signaling in part due to decreased FLS2 protein levels. Furthermore, reduction of FLS2 protein levels was caused by elevated proteasomal and autophagic degradation of FLS2. Genetic inhibition of autophagy in G protein mutants rescued FLS2 levels and immunity. Our findings suggest that the heterotrimeric G protein components, in addition to being part of the heterotrimeric G protein complex that transduces signals at the plasma membrane, also function away from the plasma membrane to control FLS2 protein levels. These results expand the functional capacity of the heterotrimeric G protein complexes in plant immunity.


2004 ◽  
Vol 72 (12) ◽  
pp. 6826-6835 ◽  
Author(s):  
Ken Teter ◽  
Michael G. Jobling ◽  
Randall K. Holmes

ABSTRACT Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic A1 polypeptide of CT (CTA1) then crosses the ER membrane, enters the cytosol, ADP-ribosylates the stimulatory α subunit of the heterotrimeric G protein (Gsα) at the cytoplasmic face of the plasma membrane, and activates adenylate cyclase. The cytosolic pool of CTA1 may reach the plasma membrane and its Gsα target by traveling on anterograde-directed transport vesicles. We examined this possibility with the use of a plasmid-based transfection system that directed newly synthesized CTA1 to either the ER lumen or the cytosol of CHO cells. Such a system allowed us to bypass the CT retrograde trafficking itinerary from the cell surface to the ER. Previous work has shown that the ER-localized pool of CTA1 is rapidly exported from the ER to the cytosol. Expression of CTA1 in either the ER or the cytosol led to the activation of Gsα, and Gsα activation was not inhibited in transfected cells exposed to drugs that inhibit vesicular traffic. Thus, anterograde transport from the ER to the plasma membrane is not required for the cytotoxic action of CTA1.


2005 ◽  
Vol 79 (11) ◽  
pp. 7077-7086 ◽  
Author(s):  
Erica L. Brown ◽  
Douglas S. Lyles

ABSTRACT Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.


Sign in / Sign up

Export Citation Format

Share Document