scholarly journals Functions of ventral visual cortex after bilateral hippocampal loss

2019 ◽  
Author(s):  
Jiye G. Kim ◽  
Emma Gregory ◽  
Barbara Landau ◽  
Michael McCloskey ◽  
Nicholas B. Turk-Browne ◽  
...  

AbstractRepeated stimuli elicit attenuated responses in visual cortex relative to novel stimuli. This adaptation phenomenon can be considered a form of rapid learning and a signature of perceptual memory. Adaptation occurs not only when a stimulus is repeated immediately, but also when there is a lag in terms of time and other intervening stimuli before the repetition. But how does the visual system keep track of which stimuli are repeated, especially after long delays and many intervening stimuli? We hypothesized that the hippocampus supports long-lag adaptation, given that it learns from single experiences, maintains information over delays, and sends feedback to visual cortex. We tested this hypothesis with fMRI in an amnesic patient, LSJ, who has encephalitic damage to the medial temporal lobe resulting in complete bilateral hippocampal loss. We measured adaptation at varying time lags between repetitions in functionally localized visual areas that were intact in LSJ. We observed that these areas track information over a few minutes even when the hippocampus is unavailable. Indeed, LSJ and controls were identical when attention was directed away from the repeating stimuli: adaptation occurred for lags up to three minutes, but not six minutes. However, when attention was directed toward stimuli, controls now showed an adaptation effect at six minutes but LSJ did not. These findings suggest that visual cortex can support one-shot perceptual memories lasting for several minutes but that the hippocampus is necessary for adaptation in visual cortex after longer delays when stimuli are task-relevant.

2019 ◽  
Author(s):  
Kevin A. Murgas ◽  
Ashley M. Wilson ◽  
Valerie Michael ◽  
Lindsey L. Glickfeld

AbstractNeurons in the visual system integrate over a wide range of spatial scales. This diversity is thought to enable both local and global computations. To understand how spatial information is encoded across the mouse visual system, we use two-photon imaging to measure receptive fields in primary visual cortex (V1) and three downstream higher visual areas (HVAs): LM (lateromedial), AL (anterolateral) and PM (posteromedial). We find significantly larger receptive field sizes and less surround suppression in PM than in V1 or the other HVAs. Unlike other visual features studied in this system, specialization of spatial integration in PM cannot be explained by specific projections from V1 to the HVAs. Instead, our data suggests that distinct connectivity within PM may support the area’s unique ability to encode global features of the visual scene, whereas V1, LM and AL may be more specialized for processing local features.


2020 ◽  
Vol 191 ◽  
pp. 101819 ◽  
Author(s):  
Jiye G. Kim ◽  
Emma Gregory ◽  
Barbara Landau ◽  
Michael McCloskey ◽  
Nicholas B. Turk-Browne ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Michael J Arcaro ◽  
Christopher J Honey ◽  
Ryan EB Mruczek ◽  
Sabine Kastner ◽  
Uri Hasson

The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.


2020 ◽  
Vol 124 (1) ◽  
pp. 245-258 ◽  
Author(s):  
Miaomiao Jin ◽  
Lindsey L. Glickfeld

Rapid adaptation dynamically alters sensory signals to account for recent experience. To understand how adaptation affects sensory processing and perception, we must determine how it impacts the diverse set of cortical and subcortical areas along the hierarchy of the mouse visual system. We find that rapid adaptation strongly impacts neurons in primary visual cortex, the higher visual areas, and the colliculus, consistent with its profound effects on behavior.


2017 ◽  
Vol 17 (10) ◽  
pp. 483
Author(s):  
Jiye Kim ◽  
Julie Blumberg ◽  
Franz Aiple ◽  
Peter Reinacher ◽  
Jed Singer ◽  
...  

2015 ◽  
Vol 32 ◽  
Author(s):  
M.J. ARCARO ◽  
S. KASTNER

AbstractAreas V3 and V4 are commonly thought of as individual entities in the primate visual system, based on definition criteria such as their representation of visual space, connectivity, functional response properties, and relative anatomical location in cortex. Yet, large-scale functional and anatomical organization patterns not only emphasize distinctions within each area, but also links across visual cortex. Specifically, the visuotopic organization of V3 and V4 appears to be part of a larger, supra-areal organization, clustering these areas with early visual areas V1 and V2. In addition, connectivity patterns across visual cortex appear to vary within these areas as a function of their supra-areal eccentricity organization. This complicates the traditional view of these regions as individual functional “areas.” Here, we will review the criteria for defining areas V3 and V4 and will discuss functional and anatomical studies in humans and monkeys that emphasize the integration of individual visual areas into broad, supra-areal clusters that work in concert for a common computational goal. Specifically, we propose that the visuotopic organization of V3 and V4, which provides the criteria for differentiating these areas, also unifies these areas into the supra-areal organization of early visual cortex. We propose that V3 and V4 play a critical role in this supra-areal organization by filtering information about the visual environment along parallel pathways across higher-order cortex.


2013 ◽  
Author(s):  
Jussi Valtonen ◽  
Emma Gregory ◽  
Joel Ramirez ◽  
Michael McCloskey ◽  
Barbara Landau

2005 ◽  
Vol 360 (1456) ◽  
pp. 709-731 ◽  
Author(s):  
Ricardo Gattass ◽  
Sheila Nascimento-Silva ◽  
Juliana G.M Soares ◽  
Bruss Lima ◽  
Ana Karla Jansen ◽  
...  

The visual system is constantly challenged to organize the retinal pattern of stimulation into coherent percepts. This task is achieved by the cortical visual system, which is composed by topographically organized analytic areas and by synthetic areas of the temporal lobe that have more holistic processing. Additional visual areas of the parietal lobe are related to motion perception and visuomotor control. V1 and V2 represent the entire visual field. MT represents only the binocular field, and V4 only the central 30°–40°. The parietal areas represent more of the periphery. For any eccentricity, the receptive field grows at each step of processing, more at anterior areas in the temporal lobe. Minimal point image size increases towards the temporal lobe, but remains fairly constant toward the parietal lobe. Patterns of projection show asymmetries. Central V2 and V4 project mainly to the temporal lobe, while peripherals V2 (more than 30°) and V4 (more than 10°) also project to the parietal lobe. Visual information that arrives at V1 projects to V2, MT and PO, which then project to other areas. Local lateral propagation and recursive loops corroborate to perceptual completion and filling in. Priority connections to temporal, parietal and parieto-temporal cortices help construct crude early representations of objects, trajectories and movements.


Sign in / Sign up

Export Citation Format

Share Document