scholarly journals The Genetic History of France

2019 ◽  
Author(s):  
Aude Saint Pierre ◽  
Joanna Giemza ◽  
Matilde Karakachoff ◽  
Isabel Alves ◽  
Philippe Amouyel ◽  
...  

ABSTRACTThe study of the genetic structure of different countries within Europe has provided significant insights into their demographic history and their actual stratification. Although France occupies a particular location at the end of the European peninsula and at the crossroads of migration routes, few population genetic studies have been conducted so far with genome-wide data. In this study, we analyzed SNP-chip genetic data from 2 184 individuals born in France who were enrolled in two independent population cohorts. Using FineStructure, six different genetic clusters of individuals were found that were very consistent between the two cohorts. These clusters match extremely well the geography and overlap with historical and linguistic divisions of France. By modeling the relationship between genetics and geography using EEMS software, we were able to detect gene flow barriers that are similar in the two cohorts and corresponds to major French rivers or mountains. Estimations of effective population sizes using IBDNe program also revealed very similar patterns in both cohorts with a rapid increase of effective population sizes over the last 150 generations similar to what was observed in other European countries. A marked bottleneck is also consistently seen in the two datasets starting in the fourteenth century when the Black Death raged in Europe. In conclusion, by performing the first exhaustive study of the genetic structure of France, we fill a gap in the genetic studies in Europe that would be useful to medical geneticists but also historians and archeologists.

2010 ◽  
Vol 365 (1556) ◽  
pp. 3277-3288 ◽  
Author(s):  
Anne C. Stone ◽  
Fabia U. Battistuzzi ◽  
Laura S. Kubatko ◽  
George H. Perry ◽  
Evan Trudeau ◽  
...  

Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees ( Pan troglodytes ) from each of the three established subspecies ( P. t. troglodytes , P. t. schweinfurthii and P. t. verus ) and the proposed fourth subspecies ( P. t. ellioti ). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human–chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1–1.5, 1.1–0.76 and 0.25–0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.


2020 ◽  
Vol 16 (1) ◽  
pp. 20190560
Author(s):  
Ahmed Eddine ◽  
Rita Gomes Rocha ◽  
Noureddine Mostefai ◽  
Yamna Karssene ◽  
Koen De Smet ◽  
...  

The diffusion of Neolithic technology together with the Holocene Climatic Optimum fostered the spread of human settlements and pastoral activities in North Africa, resulting in profound and enduring consequences for the dynamics of species, communities and landscapes. Here, we investigate the demographic history of the African wolf ( Canis lupaster ), a recently recognized canid species, to understand if demographic trends of this generalist and opportunistic carnivore reflect the increase in food availability that emerged after the arrival of the Neolithic economy in North Africa. We screened nuclear and mitochondrial DNA in samples collected throughout Algeria and Tunisia, and implemented coalescent approaches to estimate the variation of effective population sizes from present to ancestral time. We have found consistent evidence supporting the hypothesis that the African wolf population experienced a meaningful expansion concurring with a period of rapid population expansion of domesticates linked to the advent of agricultural practices.


2020 ◽  
Vol 117 (20) ◽  
pp. 10927-10934 ◽  
Author(s):  
Marc de Manuel ◽  
Ross Barnett ◽  
Marcela Sandoval-Velasco ◽  
Nobuyuki Yamaguchi ◽  
Filipe Garrett Vieira ◽  
...  

Lions are one of the world’s most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 450-450
Author(s):  
Tatiana Evgenievna Deniskova ◽  
Arsen V Dotsev ◽  
Marina I Selionova ◽  
Margaret S Fornara ◽  
Henry Reyer ◽  
...  

Abstract Specific environmental conditions and local livestock management systems resulted in creation of valuable native breeds. The timely monitoring of genetic diversity within native breeds based on using high-throughput DNA arrays will prevent their irreparable loss. In this regard, we aimed to assess genome-wide diversity and to study demographic history of Russian native goat breeds (Altai Mountain, Orenburg, Soviet Mohair, Dagestan Milk, Dagestan Local, Dagestan Fluff and Karachaev) based on SNP-data. A total of 200 goats were genotyped using Goat 50K SNP BeadChip (Illumina, USA). Quality control and SNP-filtering were performed in PLINKv1.9. R package ‘diveRsity’ was used to calculate observed heterozygosity (Ho), expected heterozygosity (He), and inbreeding coefficient (Fis). Effective population sizes (Ne) were estimated in SneP software. Observed heterozygosity was high and exceeded 0.402 in five out of seven breeds. Orenburg, Soviet Mohair, Dagestan Milk, and Karachaev breeds showed slight excess of heterozygotes varied from 0.6% (Fis= -0.015) in Orenburg to 1.7% (Fis= -0.04) in Karachaev breed. The traces of insignificant inbreeding were found in Dagestan Local (Fis=0.005) and Dagestan Fluff (Fis= 0.01) breeds. The recent effective population sizes estimated for four generations ago varied from 140 in Karachaev to 472 in Orenburg breed. Analysis of historical trends in effective population sizes estimated for sixty generations ago revealed obvious decrease ranging from 10.25% in Dagestan Local to 34.65% in Orenburg breed. However, recent effective sizes in Russian native goats are higher than critical threshold (Ne= 100) that is essential to breed maintenance in the future. Our research findings provide an evidence that Russian native goat breeds are not in endangered status, but development of the effective utilization programs is highly recommended. The genotyping of 96 goats was funded by RSF No. 19-76-20006. The reported study was funded by RFBR according to the research project № 18-316-20006.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 362
Author(s):  
Delphine Legrand ◽  
Michel Baguette ◽  
Jérôme G. Prunier ◽  
Quentin Dubois ◽  
Camille Turlure ◽  
...  

Understanding the functioning of natural metapopulations at relevant spatial and temporal scales is necessary to accurately feed both theoretical eco-evolutionary models and conservation plans. One key metric to describe the dynamics of metapopulations is dispersal rate. It can be estimated with either direct field estimates of individual movements or with indirect molecular methods, but the two approaches do not necessarily match. We present a field study in a large natural metapopulation of the butterfly Boloria eunomia in Belgium surveyed over three generations using synchronized demographic and genetic datasets with the aim to characterize its genetic structure, its dispersal dynamics, and its demographic stability. By comparing the census and effective population sizes, and the estimates of dispersal rates, we found evidence of stability at several levels: constant inter-generational ranking of population sizes without drastic historical changes, stable genetic structure and geographically-influenced dispersal movements. Interestingly, contemporary dispersal estimates matched between direct field and indirect genetic assessments. We discuss the eco-evolutionary mechanisms that could explain the described stability of the metapopulation, and suggest that destabilizing agents like inter-generational fluctuations in population sizes could be controlled by a long adaptive history of the species to its dynamic local environment. We finally propose methodological avenues to further improve the match between demographic and genetic estimates of dispersal.


Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


2011 ◽  
Vol 102 (3) ◽  
pp. 333-343 ◽  
Author(s):  
K.C. Albernaz ◽  
K.L. Silva-Brandão ◽  
P. Fresia ◽  
F.L. Cônsoli ◽  
C. Omoto

AbstractIntra- and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton- and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's FS parameters. In addition, high values of haplotype diversity (Ĥ) and low values of nucleotide diversity (π), combined with a high number of low frequency haplotypes and values of θπ<θW, suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.


2019 ◽  
Author(s):  
Quentin Rougemont ◽  
Jean-Sébastien Moore ◽  
Thibault Leroy ◽  
Eric Normandeau ◽  
Eric B. Rondeau ◽  
...  

AbstractA thorough reconstruction of historical processes is essential for a comprehensive understanding the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded in postglacial time, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored.


Sign in / Sign up

Export Citation Format

Share Document