scholarly journals FungalRoot: Global online database of plant mycorrhizal associations

2019 ◽  
Author(s):  
Nadejda A. Soudzilovskaia ◽  
Stijn Vaessen ◽  
Milargos Barcelo ◽  
Jinhong He ◽  
Saleh Rahimlou ◽  
...  

SummaryThe urgent need to better understand profound impacts of mycorrhizas on functioning of terrestrial ecosystems, along with recent debates on resolving plant mycorrhizal associations, indicate that there is a great need for a comprehensive data of plant mycorrhizal associations able to support testing of ecological, biogeographic and phylogenetic hypotheses.Here present a database, FungalRoot, which summarizes publicly available data on plant mycorrhizal type and intensity of root colonization by mycorrhizal fungi, accompanied by rich meta-data. We collected and digitized data on plant mycorrhizal colonization intensity published until April 2019 in 9 globally most important languages. The data were assessed for quality and updated for plant taxonomy.The FungalRoot database contains 36,303 species by site observations for 14,870 plant species, tripling the previously available amount in any compilation. The great majority of ectomycorrhizal and ericod mycorrhizal plants are trees and shrubs, 92% and 85% respectively. The majority of arbuscular mycorrhizal and of non-mycorrhizal plant species are herbaceous (50% and 70%).Besides acting as a compilation of referenced observations, our publicly available database provides a recommendation list of plant mycorrhizal status for ecological and evolutionary analyses to promote research on the links between above- and belowground biodiversity and functioning of terrestrial ecosystems.

2007 ◽  
Vol 85 (5) ◽  
pp. 526-531 ◽  
Author(s):  
Eugenia Menoyo ◽  
Alejandra G. Becerra ◽  
Daniel Renison

Polylepis woodlands are one of the most threatened mountain ecosystems of South America, and their restoration is a high priority. To assess the mycorrhizal status in Polylepis woodlands of “Quebrada del Condorito” National Park (Córdoba Mountains, Central Argentina), we examined the roots of 22 plant species, belonging to 14 families and determined morphological types of arbuscular mycorrhiza (Arum and Paris type) and colonization level. The 22 species were colonized by arbuscular mycorrhizal fungi and dark septate endophytes. Different arbuscular mycorrhizal structures and colonization patterns were observed, although Paris-type colonization was predominant. Fourteen plant species are reported for the first time as hosts of arbuscular mycorrhizal fungi. We conclude that arbuscular mycorrhizal fungi and dark septate endophyte hosts are widespread in the Polylepis woodlands of Central Argentina and should receive special attention in future revegetation programs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.


2020 ◽  
Author(s):  
Mariah M. McIntosh ◽  
Lorinda Bullington ◽  
Ylva Lekberg ◽  
Lila Fishman

SUMMARYUnderstanding the physiological and genetic mechanisms underlying plant variation in interactions with root-associated biota (RAB) requires a micro-evolutionary approach. We use locally adapted montane annual and coastal perennial ecotypes of Mimulus guttatus (yellow monkeyflower) to examine population-scale differences in plant-RAB-soil feedbacks.We characterized fungal communities for the two ecotypes in-situ and used a full-factorial greenhouse experiment to investigate the effects of plant ecotype, RAB source, and soil origin on plant performance and endophytic root fungal communities.The two ecotypes harbored different fungal communities and responsiveness to soil biota was highly context-dependent. Soil origin, RAB source, and plant ecotype all affected the intensity of biotic feedbacks on plant performance. Feedbacks were primarily negative, and we saw little evidence of local adaptation to either soils or RAB. Both RAB source and soil origin significantly shaped fungal communities in roots of experimental plants. Further, the perennial ecotype was more colonized by arbuscular mycorrhizal fungi (AMF) than the montane ecotype, and preferentially recruited home AMF taxa.Our results suggest life history divergence and distinct edaphic habitats shape plant responsiveness to RAB and influence specific associations with potentially mutualistic root endophytic fungi. Our results advance the mechanistic study of intraspecific variation in plant–soil–RAB interactions.


2001 ◽  
Vol 79 (10) ◽  
pp. 1161-1166 ◽  
Author(s):  
John N Klironomos ◽  
Miranda M Hart ◽  
Jane E Gurney ◽  
Peter Moutoglis

Arbuscular mycorrhizal fungal communities in northern temperate ecosystems must function during extremes in environmental conditions. However, it is not known if arbuscular mycorrhizal fungi that co-exist in soil communities have similar tolerances to stresses such as drought and freezing. The phenology of arbuscular mycorrhizal fungi was determined over one year in a community in southern Ontario, Canada. Five fungal species from the same community were then used to inoculate five plant species, in all possible combinations, and were subjected to either a freezing treatment or a drought treatment after which new seedlings were transplanted into the treated pots. The percent colonization of roots of each plant species was measured as the difference in mean colonization from the control. Freezing reduced percent colonization in almost every case, whereas drought resulted in both increased and decreased percent colonization. Fungal species responded differently to the treatments, and there was a pronounced plant × fungus effect. These results support the hypothesis that distinct functional groups of arbuscular mycorrhizal fungi exist, and these may determine plant community structure.Key words: arbuscular mycorrhizal fungi, freezing, drying, functional diversity.


2019 ◽  
Vol 40 ◽  
pp. 118-126
Author(s):  
Clémentine Lepinay ◽  
Tomáš Dostálek ◽  
Hana Pánková ◽  
Martina Svobodová ◽  
Jana Rydlová ◽  
...  

Botany ◽  
2014 ◽  
Vol 92 (4) ◽  
pp. 277-285 ◽  
Author(s):  
Ülle Saks ◽  
John Davison ◽  
Maarja Öpik ◽  
Martti Vasar ◽  
Mari Moora ◽  
...  

We analyzed arbuscular mycorrhizal fungal (AMF) communities in plant root samples from a natural forest ecosystem — a primeval forest in Järvselja, Estonia. AMF small-subunit (SSU) ribosomal RNA genes were subjected to 454-pyrosequencing and BLAST-based taxonomic identification. Seventy-six AMF sequence groups (virtual taxa, VT) were identified from plant roots. Taken together with seven additional VT recorded in an earlier investigation of soil AMF communities at the site, this represents the highest number of AMF reported from a single ecosystem to date. The six study plant species hosted similar AMF communities. However, AMF community composition in plant roots was significantly different from that in soil and considerably more VT were retrieved from roots than from soil. AMF VT identified from plant roots as a whole and from individual plant species were frequently phylogenetically clustered compared with local and global taxon pools, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped fungal assemblages. In contrast, the phylogenetic dispersion of AMF communities in soil did not differ from random subsets of the local or global taxon pools.


Sign in / Sign up

Export Citation Format

Share Document