scholarly journals Multiplexed, bioorthogonal labeling of multicomponent, biomolecular complexes using genomically encoded, non-canonical amino acids

2019 ◽  
Author(s):  
Bijoy J. Desai ◽  
Ruben L. Gonzalez

Stunning advances in the structural biology of multicomponent biomolecular complexes (MBCs) have ushered in an era of intense, structure-guided mechanistic and functional studies of these complexes. Nonetheless, existing methods to site-specifically conjugate MBCs with biochemical and biophysical labels are notoriously impracticable and/or significantly perturb MBC assembly and function. To overcome these limitations, we have developed a general, multiplexed method in which we genomically encode non-canonical amino acids (ncAAs) into multiple, structure-informed, individual sites within a target MBC; select for ncAA-containing MBC variants that assemble and function like the wildtype MBC; and site-specifically conjugate biochemical or biophysical labels to these ncAAs. As a proof-of-principle, we have used this method to generate unique single-molecule fluorescence resonance energy transfer (smFRET) signals reporting on ribosome structural dynamics that have thus far remained inaccessible to smFRET studies of translation.

2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2018 ◽  
Author(s):  
Alexander Carl DeHaven

This thesis contains four topic areas: a review of single-molecule microscropy methods and splicing, conformational dynamics of stem II of the U2 snRNA, the impact of post-transcriptional modifications on U2 snRNA folding dynamics, and preliminary findings on Mango aptamer folding dynamics.


Author(s):  
Johannes Thomsen ◽  
Magnus B. Sletfjerding ◽  
Stefano Stella ◽  
Bijoya Paul ◽  
Simon Bo Jensen ◽  
...  

AbstractSingle molecule Förster Resonance energy transfer (smFRET) is a mature and adaptable method for studying the structure of biomolecules and integrating their dynamics into structural biology. The development of high throughput methodologies and the growth of commercial instrumentation have outpaced the development of rapid, standardized, and fully automated methodologies to objectively analyze the wealth of produced data. Here we present DeepFRET, an automated standalone solution based on deep learning, where the only crucial human intervention in transiting from raw microscope images to histogram of biomolecule behavior, is a user-adjustable quality threshold. Integrating all standard features of smFRET analysis, DeepFRET will consequently output common kinetic information metrics for biomolecules. We validated the utility of DeepFRET by performing quantitative analysis on simulated, ground truth, data and real smFRET data. The accuracy of classification by DeepFRET outperformed human operators and current commonly used hard threshold and reached >95% precision accuracy only requiring a fraction of the time (<1% as compared to human operators) on ground truth data. Its flawless and rapid operation on real data demonstrates its wide applicability. This level of classification was achieved without any preprocessing or parameter setting by human operators, demonstrating DeepFRET’s capacity to objectively quantify biomolecular dynamics. The provided a standalone executable based on open source code capitalises on the widespread adaptation of machine learning and may contribute to the effort of benchmarking smFRET for structural biology insights.


2020 ◽  
Author(s):  
Giorgos Gouridis ◽  
Yusran A. Muthahari ◽  
Marijn de Boer ◽  
Konstantinos Tassis ◽  
Alexandra Tsirigotaki ◽  
...  

AbstractNovel biophysical tools allow the structural dynamics of proteins, and the regulation of such dynamics by binding partners, to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remains poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the type-II periplasmic binding protein domain family, have undergone divergent evolution leading to modification of their structural dynamics and function. We performed a structural analysis of ~600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen-Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enables distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extra-cytoplasmic transport-related proteins. Structural embellishments of the core created new interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately, altered substrate specificity. Our findings reveal an as yet unrecognized mechanism for the emergence of functional promiscuity during long periods of protein evolution and are applicable to a large number of domain architectures.


2021 ◽  
Vol 118 (49) ◽  
pp. e2026165118
Author(s):  
Giorgos Gouridis ◽  
Yusran A. Muthahari ◽  
Marijn de Boer ◽  
Douglas A. Griffith ◽  
Alexandra Tsirigotaki ◽  
...  

Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.


2019 ◽  
Author(s):  
Jaba Mitra ◽  
Taekjip Ha

AbstractRecent advances in fluorogen-binding RNA aptamers known as “light-up” aptamers provide an avenue for protein-free detection of RNA in cells. Crystallographic studies have revealed a G-Quadruplex (GQ) structure at the core of light-up aptamers such as Spinach, Mango and Corn. Detailed biophysical characterization of folding of such aptamers is still lacking despite the potential implications on their in vivo folding and function. We used single-molecule fluorescence-force spectroscopy that combines fluorescence resonance energy transfer with optical tweezers to examine mechanical responses of Spinach2, iMangoIII and MangoIV. Spinach2 unfolded in four discrete steps as force is increased to 7 pN and refolded in reciprocal steps upon force relaxation. Binding of DFHBI-1T fluorogen preserved the step-wise unfolding behavior although at slightly higher forces. In contrast, GQ core unfolding in iMangoIII and MangoIV occurred in one discrete step at forces > 10 pN and refolding occurred at lower forces showing hysteresis. Binding of the cognate fluorogen, TO1, did not significantly alter the mechanical stability of Mangos. In addition to K+, which is needed to stabilize the GQ cores, Mg2+ was needed to obtain full mechanical stability of the aptamers. Co-transcriptional folding analysis using superhelicases showed that co-transcriptional folding reduces misfolding and allows a folding pathway different from refolding. As the fundamental cellular processes like replication, transcription etc. exert pico-Newton levels of force, these aptamers may unfold in vivo and subsequently misfold.


Sign in / Sign up

Export Citation Format

Share Document