scholarly journals The chromosomal-level genome assembly and comprehensive transcriptomes of Chinese razor clam (Sinonovacula constricta) with deep-burrowing life style and broad-range salinity adaptation

2019 ◽  
Author(s):  
Yinghui Dong ◽  
Qifan Zeng ◽  
Jianfeng Ren ◽  
Hanhan Yao ◽  
Wenbin Ruan ◽  
...  

AbstractBackgroundThe Chinese razor clam, Sinonovacula constricta, is one of the commercially important marine bivalves with deep-burrowing lifestyle and remarkable adaptability of broad-range salinity. Despite its economic impact and representative of the less-understood deep-burrowing bivalve lifestyle, there are few genomic resources for exploring its unique biology and adaptive evolution. Herein, we reported a high-quality chromosomal-level reference genome of S. constricta, the first genome of the family Solenidae, along with a large amount of short-read/full-length transcriptomic data of whole-ontogeny developmental stages, all major adult tissues, and gill tissues under salinity challenge.FindingsA total of 101.79 Gb and 129.73 Gb sequencing data were obtained with the PacBio and Illumina platforms, which represented approximately 186.63X genome coverage. In addition, a total of 160.90 Gb and 24.55 Gb clean data were also obtained with the Illumina and PacBio platforms for transcriptomic investigation. A de novo genome assembly of 1,340.13 Mb was generated, with a contig N50 of 689.18 kb. Hi-C scaffolding resulted in 19 chromosomes with a scaffold N50 of 57.99 Mb. The repeat sequences account for 50.71% of the assembled genome. A total of 26,273 protein-coding genes were predicted and 99.5% of them were annotated. Phylogenetic analysis revealed that S. constricta diverged from the lineage of Pteriomorphia at approximately 494 million years ago. Notably, cytoskeletal protein tubulin and motor protein dynein gene families are rapidly expanded in the S. constricta genome and are highly expressed in the mantle and gill, implicating potential genomic bases for the well-developed ciliary system in the S. constricta.ConclusionsThe high-quality genome assembly and comprehensive transcriptomes generated in this work not only provides highly valuable genomic resources for future studies of S. constricta, but also lays a solid foundation for further investigation into the adaptive mechanisms of benthic burrowing mollusks.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jielong Zhou ◽  
Peifu Wu ◽  
Zhongping Xiong ◽  
Naiyong Liu ◽  
Ning Zhao ◽  
...  

A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Qingzhen Wei ◽  
Jinglei Wang ◽  
Wuhong Wang ◽  
Tianhua Hu ◽  
Haijiao Hu ◽  
...  

Abstract Eggplant (Solanum melongena L.) is an economically important vegetable crop in the Solanaceae family, with extensive diversity among landraces and close relatives. Here, we report a high-quality reference genome for the eggplant inbred line HQ-1315 (S. melongena-HQ) using a combination of Illumina, Nanopore and 10X genomics sequencing technologies and Hi-C technology for genome assembly. The assembled genome has a total size of ~1.17 Gb and 12 chromosomes, with a contig N50 of 5.26 Mb, consisting of 36,582 protein-coding genes. Repetitive sequences comprise 70.09% (811.14 Mb) of the eggplant genome, most of which are long terminal repeat (LTR) retrotransposons (65.80%), followed by long interspersed nuclear elements (LINEs, 1.54%) and DNA transposons (0.85%). The S. melongena-HQ eggplant genome carries a total of 563 accession-specific gene families containing 1009 genes. In total, 73 expanded gene families (892 genes) and 34 contraction gene families (114 genes) were functionally annotated. Comparative analysis of different eggplant genomes identified three types of variations, including single-nucleotide polymorphisms (SNPs), insertions/deletions (indels) and structural variants (SVs). Asymmetric SV accumulation was found in potential regulatory regions of protein-coding genes among the different eggplant genomes. Furthermore, we performed QTL-seq for eggplant fruit length using the S. melongena-HQ reference genome and detected a QTL interval of 71.29–78.26 Mb on chromosome E03. The gene Smechr0301963, which belongs to the SUN gene family, is predicted to be a key candidate gene for eggplant fruit length regulation. Moreover, we anchored a total of 210 linkage markers associated with 71 traits to the eggplant chromosomes and finally obtained 26 QTL hotspots. The eggplant HQ-1315 genome assembly can be accessed at http://eggplant-hq.cn. In conclusion, the eggplant genome presented herein provides a global view of genomic divergence at the whole-genome level and powerful tools for the identification of candidate genes for important traits in eggplant.


GigaScience ◽  
2019 ◽  
Vol 8 (8) ◽  
Author(s):  
Lu Wang ◽  
Jinwei Wu ◽  
Xiaomei Liu ◽  
Dandan Di ◽  
Yuhong Liang ◽  
...  

Abstract Background The golden snub-nosed monkey (Rhinopithecus roxellana) is an endangered colobine species endemic to China, which has several distinct traits including a unique social structure. Although a genome assembly for R. roxellana is available, it is incomplete and fragmented because it was constructed using short-read sequencing technology. Thus, important information such as genome structural variation and repeat sequences may be absent. Findings To obtain a high-quality chromosomal assembly for R. roxellana qinlingensis, we used 5 methods: Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, BioNano optical maps, 10X Genomics link-reads, and high-throughput chromosome conformation capture. The assembled genome was ∼3.04 Gb, with a contig N50 of 5.72 Mb and a scaffold N50 of 144.56 Mb. This represented a 100-fold improvement over the previously published genome. In the new genome, 22,497 protein-coding genes were predicted, of which 22,053 were functionally annotated. Gene family analysis showed that 993 and 2,745 gene families were expanded and contracted, respectively. The reconstructed phylogeny recovered a close relationship between R. rollexana and Macaca mulatta, and these 2 species diverged ∼13.4 million years ago. Conclusion We constructed a high-quality genome assembly of the Qinling golden snub-nosed monkey; it had superior continuity and accuracy, which might be useful for future genetic studies in this species and as a new standard reference genome for colobine primates. In addition, the updated genome assembly might improve our understanding of this species and could assist conservation efforts.


GigaScience ◽  
2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Fanming Meng ◽  
Zhuoying Liu ◽  
Han Han ◽  
Dmitrijs Finkelbergs ◽  
Yangshuai Jiang ◽  
...  

Abstract Background Blowflies (Diptera: Calliphoridae) are the most commonly found entomological evidence in forensic investigations. Distinguished from other blowflies, Aldrichina grahami has some unique biological characteristics and is a species of forensic importance. Its development rate, pattern, and life cycle can provide valuable information for the estimation of the minimum postmortem interval. Findings Herein we provide a chromosome-level genome assembly of A. grahami that was generated by Pacific BioSciences sequencing platform and chromosome conformation capture (Hi-C) technology. A total of 50.15 Gb clean reads of the A. grahami genome were generated. FALCON and Wtdbg were used to construct the genome of A. grahami, resulting in an assembly of 600 Mb and 1,604 contigs with an N50 size of 1.93 Mb. We predicted 12,823 protein-coding genes, 99.8% of which was functionally annotated on the basis of the de novo genome (SRA: PRJNA513084) and transcriptome (SRA: SRX5207346) of A. grahami. According to the co-analysis with 11 other insect species, clustering and phylogenetic reconstruction of gene families were performed. Using Hi-C sequencing, a chromosome-level assembly of 6 chromosomes was generated with scaffold N50 of 104.7 Mb. Of these scaffolds, 96.4% were anchored to the total A. grahami genome contig bases. Conclusions The present study provides a robust genome reference for A. grahami that supplements vital genetic information for nonhuman forensic genomics and facilitates the future research of A. grahami and other necrophagous blowfly species used in forensic medicine.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillermo Friis ◽  
Joel Vizueta ◽  
Edward G Smith ◽  
David R Nelson ◽  
Basel Khraiwesh ◽  
...  

Abstract The gray mangrove [Avicennia marina (Forsk.) Vierh.] is the most widely distributed mangrove species, ranging throughout the Indo-West Pacific. It presents remarkable levels of geographic variation both in phenotypic traits and habitat, often occupying extreme environments at the edges of its distribution. However, subspecific evolutionary relationships and adaptive mechanisms remain understudied, especially across populations of the West Indian Ocean. High-quality genomic resources accounting for such variability are also sparse. Here we report the first chromosome-level assembly of the genome of A. marina. We used a previously release draft assembly and proximity ligation libraries Chicago and Dovetail HiC for scaffolding, producing a 456,526,188-bp long genome. The largest 32 scaffolds (22.4–10.5 Mb) accounted for 98% of the genome assembly, with the remaining 2% distributed among much shorter 3,759 scaffolds (62.4–1 kb). We annotated 45,032 protein-coding genes using tissue-specific RNA-seq data in combination with de novo gene prediction, from which 34,442 were associated to GO terms. Genome assembly and annotated set of genes yield a 96.7% and 95.1% completeness score, respectively, when compared with the eudicots BUSCO dataset. Furthermore, an FST survey based on resequencing data successfully identified a set of candidate genes potentially involved in local adaptation and revealed patterns of adaptive variability correlating with a temperature gradient in Arabian mangrove populations. Our A. marina genomic assembly provides a highly valuable resource for genome evolution analysis, as well as for identifying functional genes involved in adaptive processes and speciation.


GigaScience ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Monica M Sheffer ◽  
Anica Hoppe ◽  
Henrik Krehenwinkel ◽  
Gabriele Uhl ◽  
Andreas W Kuss ◽  
...  

Abstract Background Argiope bruennichi, the European wasp spider, has been investigated intensively as a focal species for studies on sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies. Findings We generated, de novo, a 1.67 Gb genome assembly of A. bruennichi using 21.8× Pacific Biosciences sequencing, polished with 19.8× Illumina paired-end sequencing data, and proximity ligation (Hi-C)-based scaffolding. This resulted in an N50 scaffold size of 124 Mb and an N50 contig size of 288 kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high-quality assembly. Conclusions We present the first chromosome-level genome assembly in the order Araneae. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation not only in A. bruennichi but also in arachnids overall, shedding light on questions such as the genomic architecture of traits, whole-genome duplication, and the genomic mechanisms behind silk and venom evolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Feng Tian ◽  
Qiao-Mu Hu ◽  
Zhong Li

Abstract The swamp eel (Monopterus albus) is one economically important fish in China and South-Eastern Asia and a good model species to study sex inversion. There are different genetic lineages and multiple local strains of swamp eel in China, and one local strain of M. albus with deep yellow and big spots has been selected for consecutive selective breeding due to superiority in growth rate and fecundity. A high-quality reference genome of the swamp eel would be a very useful resource for future selective breeding program. In the present study, we applied PacBio single-molecule sequencing technique (SMRT) and the high-throughput chromosome conformation capture (Hi-C) technologies to assemble the M. albus genome. A 799 Mb genome was obtained with the contig N50 length of 2.4 Mb and scaffold N50 length of 67.24 Mb, indicating 110-fold and ∼31.87-fold improvement compared to the earlier released assembly (∼22.24 Kb and 2.11 Mb, respectively). Aided with Hi-C data, a total of 750 contigs were reliably assembled into 12 chromosomes. Using 22,373 protein-coding genes annotated here, the phylogenetic relationships of the swamp eel with other teleosts showed that swamp eel separated from the common ancestor of Zig-zag eel ∼49.9 million years ago, and 769 gene families were found expanded, which are mainly enriched in the immune system, sensory system, and transport and catabolism. This highly accurate, chromosome-level reference genome of M. albus obtained in this work will be used for the development of genome-scale selective breeding.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8914 ◽  
Author(s):  
Wen Wang ◽  
Fang Wang ◽  
Rongkai Hao ◽  
Aizhen Wang ◽  
Kirill Sharshov ◽  
...  

Background The bar-headed goose (Anser indicus) mainly inhabits the plateau wetlands of Asia. As a specialized high-altitude species, bar-headed geese can migrate between South and Central Asia and annually fly twice over the Himalayan mountains along the central Asian flyway. The physiological, biochemical and behavioral adaptations of bar-headed geese to high-altitude living and flying have raised much interest. However, to date, there is still no genome assembly information publicly available for bar-headed geese. Methods In this study, we present the first de novo whole genome sequencing and assembly of the bar-headed goose, along with gene prediction and annotation. Results 10X Genomics sequencing produced a total of 124 Gb sequencing data, which can cover the estimated genome size of bar-headed goose for 103 times (average coverage). The genome assembly comprised 10,528 scaffolds, with a total length of 1.143 Gb and a scaffold N50 of 10.09 Mb. Annotation of the bar-headed goose genome assembly identified a total of 102 Mb (8.9%) of repetitive sequences, 16,428 protein-coding genes, and 282 tRNAs. In total, we determined that there were 63 expanded and 20 contracted gene families in the bar-headed goose compared with the other 15 vertebrates. We also performed a positive selection analysis between the bar-headed goose and the closely related low-altitude goose, swan goose (Anser cygnoides), to uncover its genetic adaptations to the Qinghai-Tibetan Plateau. Conclusion We reported the currently most complete genome sequence of the bar-headed goose. Our assembly will provide a valuable resource to enhance further studies of the gene functions of bar-headed goose. The data will also be valuable for facilitating studies of the evolution, population genetics and high-altitude adaptations of the bar-headed geese at the genomic level.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Robert M. Nowak ◽  
Jan P. Jastrzębski ◽  
Wiktor Kuśmirek ◽  
Rusłan Sałamatin ◽  
Małgorzata Rydzanicz ◽  
...  

AbstractDespite the use of Hymenolepis diminuta as a model organism in experimental parasitology, a full genome description has not yet been published. Here we present a hybrid de novo genome assembly based on complementary sequencing technologies and methods. The combination of Illumina paired-end, Illumina mate-pair and Oxford Nanopore Technology reads greatly improved the assembly of the H. diminuta genome. Our results indicate that the hybrid sequencing approach is the method of choice for obtaining high-quality data. The final genome assembly is 177 Mbp with contig N50 size of 75 kbp and a scaffold N50 size of 2.3 Mbp. We obtained one of the most complete cestode genome assemblies and annotated 15,169 potential protein-coding genes. The obtained data may help explain cestode gene function and better clarify the evolution of its gene families, and thus the adaptive features evolved during millennia of co-evolution with their hosts.


Author(s):  
Monica M. Sheffer ◽  
Anica Hoppe ◽  
Henrik Krehenwinkel ◽  
Gabriele Uhl ◽  
Andreas W. Kuss ◽  
...  

AbstractBackgroundArgiope bruennichi, the European wasp spider, has been studied intensively as to sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies.FindingsWe generated, de novo, a 1.67Gb genome assembly of A. bruennichi using 21.5X PacBio sequencing, polished with 30X Illumina paired-end sequencing data, and proximity ligation (Hi-C) based scaffolding. This resulted in an N50 scaffold size of 124Mb and an N50 contig size of 288kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high quality of the assembly.ConclusionsWe present the first chromosome-level genome assembly in the class Arachnida. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation in A. bruennichi, as well as on several interesting topics in Arachnids, such as the genomic architecture of traits, whole genome duplication and the genomic mechanisms behind silk and venom evolution.


Sign in / Sign up

Export Citation Format

Share Document