scholarly journals Topography and Land Use Modulate Hydrological and Nutrient Export Dynamics in two Andean Streams

2019 ◽  
Author(s):  
Alejandro Sosnovsky ◽  
Mailén Elizabeth Lallement ◽  
Magalí Rechencq ◽  
Eduardo Enrique Zattara ◽  
María Valeria Fernández ◽  
...  

AbstractFluvial dynamics are driven by multiple environmental factors and scales. Studies coupling hydrological and nutrient dynamics of Andean streams are almost nonexistent. We characterized two adjacent streams with contrasting drainage basins: Casa de Piedra, originating in a small mountain lake and running through a pristine landscape, and Gutiérrez, originating in a large piedmont lake and running through an anthropized landscape. Despite both drainage basins sharing geology and climate, we found that the streams presented contrasting hydrological and nutrient dynamics. Casa de Piedra had higher discharge flashiness with shorter response delays to precipitation. Interestingly, Gutiérrez’s hydrology was buffered by the upstream lake, but its nutrient exports were not. Differences observed in quality and timing of coarse particulate organic matter export and basal export levels of phosphorus and nitrogen could be explained by human activities affecting Gutiérrez but not Casa de Piedra. Moreover, nitrogen:phosphorus ratio indicates a possible future shift to phosphorus as the limiting nutrient as Andean basins become more densely populated. In summary, our annual basis study shows that even under a common geology and climate, stream dynamics of adjacent basins can be starkly different due to differences in topography and land use.

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1776 ◽  
Author(s):  
Fatemeh Hashemi ◽  
Ina Pohle ◽  
Johannes W.M. Pullens ◽  
Henrik Tornbjerg ◽  
Katarina Kyllmar ◽  
...  

Optimal nutrient pollution monitoring and management in catchments requires an in-depth understanding of spatial and temporal factors controlling nutrient dynamics. Such an understanding can potentially be obtained by analysing stream concentration–discharge (C-Q) relationships for hysteresis behaviours and export regimes. Here, a classification scheme including nine different C-Q types was applied to a total of 87 Nordic streams draining mini-catchments (0.1–65 km2). The classification applied is based on a combination of stream export behaviour (dilution, constant, enrichment) and hysteresis rotational pattern (clock-wise, no rotation, anti-clockwise). The scheme has been applied to an 8-year data series (2010–2017) from small streams in Denmark, Sweden, and Finland on daily discharge and discrete nutrient concentrations, including nitrate (NO3−), total organic N (TON), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP). The dominant nutrient export regimes were enrichment for NO3− and constant for TON, DRP, and PP. Nutrient hysteresis patterns were primarily clockwise or no hysteresis. Similarities in types of C-Q relationships were investigated using Principal Component Analysis (PCA) considering effects of catchment size, land use, climate, and dominant soil type. The PCA analysis revealed that land use and air temperature were the dominant factors controlling nutrient C-Q types. Therefore, the nutrient export behaviour in streams draining Nordic mini-catchments seems to be dominantly controlled by their land use characteristics and, to a lesser extent, their climate.


2019 ◽  
Vol 45 (6) ◽  
pp. 1171-1181 ◽  
Author(s):  
Cameron Irvine ◽  
Merrin Macrae ◽  
Matthew Morison ◽  
Richard Petrone

2021 ◽  
Vol 11 (21) ◽  
pp. 10430
Author(s):  
Jiraporn Kulsoontornrat ◽  
Suwit Ongsomwang

Human activity and land-use changes have affected the water quality of Kwan Phayao, Upper Ing watershed, due to the associated high sediment load and eutrophication. This study aims to identify suitable LULC allocation scenarios for minimizing sediment and nutrient export into the lake. For this purpose, the LULC status and change were first assessed, based on classified LULC data in 2009 and 2019 from Landsat images, using the SVM algorithm. Later, the land requirements of three scenarios between 2020 and 2029 were estimated, based on their characteristics, and applied to predict LULC change using the CLUE-S model. Then, actual LULC data in 2019 and predicted LULC data under three scenarios between 2020 and 2029 were used to estimate sediment and nutrient export using the SDR and NDR models. Finally, the ecosystem service change index identified a suitable LULC allocation for minimizing sediment or/and nutrient export. According to the results, LULC status and change indicated perennial trees and orchards, para rubber, and rangeland increased, while forest land and paddy fields decreased. The land requirements of the three scenarios provided reasonable results, as expected, particularly Scenario II, which adopts linear programming to calculate the land requirements for maximizing ecosystem service values. For sediment and nutrient export estimation under the predicted LULC for the three scenarios, Scenario II led to the lowest yield of sediment and nutrient exports, and provided the lowest average ESCI value among the three scenarios. Thus, the LULC allocation under Scenario II was chosen as suitable for minimizing sediment or/and nutrient export into Kwan Phayao. These results can serve as crucial information to minimize sediment and nutrient loads for land-use planners, land managers, and decision makers.


2015 ◽  
Vol 75 (4 suppl 2) ◽  
pp. 107-119
Author(s):  
M. T. Nóbrega ◽  
E. Serra ◽  
H. Silveira ◽  
P. M. B. Terassi ◽  
C. M. Bonifácio

The aim of this study is to characterize the Pirapó, Paranapanema 3 and 4 Hydrographic Unit, emphasizing its physical attributes and processes of use and occupation, responsible for the structure of the current landscape and the state of its water resources. The recognition of the landscape’s spatial structure in the hydrographic unit and its drainage basins was obtained by integrated analysis of the main elements that compose it: geology, landforms (hypsometric and slope), soils, climate and land use. Analysis revealed that within each drainage basin several variations in the spatial structure of the landscape occur which produce an internal compartmentalization. Each compartment is defined by its own geo-ecological structure, physiognomic standards and dynamics, reflected in its potentialities and vulnerabilities and in the conditions of water resources in the wake of occupation and use over time.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1438 ◽  
Author(s):  
Luis Morales-Marín ◽  
Howard Wheater ◽  
Karl-Erich Lindenschmidt

Climate and land-use changes modify the physical functioning of river basins and, in particular, influence the transport of nutrients from land to water. In large-scale basins, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land-use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms one of the largest river systems in western Canada. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality in the basin, in order to describe spatial and temporal patterns and identify those factors and processes that affect water quality. Forty-five climate and land-use change scenarios comprehended by five General Circulation Models (GCMs) and three Representative Concentration Pathways (RCPs) were incorporated into the model to explain how total nitrogen (TN) and total phosphorus (TP) export could vary across the basin in 30, 60 and 90 years from now. According to model results, annual averages of TN and TP export in the SSR are going to increase in the range 0.9–1.28 kg km − 2 year − 1 and 0.12–0.17 kg km − 2 year − 1 , respectively, by the end of the century, due to climate and land-use changes. Higher increases of TP compared to TN are expected since TP and TN are going to increase ∼36% and ∼21%, respectively, by the end of the century. This research will support management plans in order to mitigate nutrient export under future changes of climate and land use.


2014 ◽  
Vol 123 (1-2) ◽  
pp. 99-116 ◽  
Author(s):  
Dingjiang Chen ◽  
Minpeng Hu ◽  
Yi Guo ◽  
Randy A. Dahlgren

Sign in / Sign up

Export Citation Format

Share Document