scholarly journals Sag currents are a major contributor to human pyramidal cell intrinsic differences across cortical layers

2019 ◽  
Author(s):  
Homeira Moradi Chameh ◽  
Scott Rich ◽  
Lihua Wang ◽  
Fu-Der Chen ◽  
Liang Zhang ◽  
...  

AbstractIn the human neocortex, coherent theta (∼8Hz) oscillations between superficial and deep cortical layers are driven by deep layer neurons, suggesting distinct intrinsic electrophysiological properties of L5 neurons. We used in vitro whole-cell recordings to characterize pyramidal cells in layer 2/3 (L2/3), layer 3c (L3c) and layer 5 (L5) of the human neocortex. L5 pyramidal cells were more excitable and had a more prominent sag relative to L2/3 and L3c neurons that was abolished by blockade of the hyperpolarization activated cation current (Ih). We found a greater proportion of L5 and L3c neurons displaying subthreshold resonance relative to L2/3. Although no theta subthreshold resonance was observed in either L5 and L2/3 neurons, L5 neurons were more adept at tracking both delta (4Hz) and theta oscillations, the former being dependent on Ih. The unique features of human L5 neurons likely contribute to the emergence of theta oscillations in human cortical microcircuits.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Homeira Moradi Chameh ◽  
Scott Rich ◽  
Lihua Wang ◽  
Fu-Der Chen ◽  
Liang Zhang ◽  
...  

AbstractIn the human neocortex coherent interlaminar theta oscillations are driven by deep cortical layers, suggesting neurons in these layers exhibit distinct electrophysiological properties. To characterize this potential distinctiveness, we use in vitro whole-cell recordings from cortical layers 2 and 3 (L2&3), layer 3c (L3c) and layer 5 (L5) of the human cortex. Across all layers we observe notable heterogeneity, indicating human cortical pyramidal neurons are an electrophysiologically diverse population. L5 pyramidal cells are the most excitable of these neurons and exhibit the most prominent sag current (abolished by blockade of the hyperpolarization activated cation current, Ih). While subthreshold resonance is more common in L3c and L5, we rarely observe this resonance at frequencies greater than 2 Hz. However, the frequency dependent gain of L5 neurons reveals they are most adept at tracking both delta and theta frequency inputs, a unique feature that may indirectly be important for the generation of cortical theta oscillations.


2007 ◽  
Vol 98 (5) ◽  
pp. 2622-2632 ◽  
Author(s):  
Yu-Ming Chang ◽  
Jennifer I. Luebke

Whole cell patch-clamp recordings were employed to characterize the electrophysiological properties of layer 5 pyramidal cells in slices of the prefrontal cortex (Area 46) of the rhesus monkey. Four electrophysiologically distinct cell types were discriminated based on distinctive repetitive action potential (AP) firing patterns and single AP characteristics: regular-spiking slowly adapting type-1 cells (RS1; 62%), regular-spiking slowly adapting type-2 cells (RS2; 18%), regular-spiking fast-adapting cells (FA; 15%), and intrinsically bursting cells (IB; 5%). These cells did not differ with regard to their location in layer 5 nor in their dendritic morphology. In RS1 cells, AP threshold and amplitude did not change significantly during a 2-s spike train, whereas in RS2 and FA cells, AP threshold increased significantly and AP amplitude decreased significantly during the train. In FA cells, complete adaptation of AP firing was observed within 600 ms. IB cells displayed an all-or-none burst of three to six APs, followed by RS1-type firing behavior. RS1 cells could be further subdivided into three subtypes. Low-threshold spiking (LTS) RS1 cells exhibited an initial doublet riding on a depolarizing potential at the onset of a spike train and a prominent depolarizing afterpotential (DAP); intermediate RS1 cells (IM) exhibited a DAP, but no initial doublet, and non-LTS RS1 cells exhibited neither a DAP nor an initial doublet. RS2 and FA cells did not exhibit a DAP or initial doublets. The distinctive firing patterns of these diverse layer 5 pyramidal cells may reflect different roles played by these cells in the mediation of subcortical neuronal activity by the dorsolateral PFC.


2021 ◽  
Author(s):  
Danqing Yang ◽  
Guanxiao Qi ◽  
Dirk Feldmeyer

Neocortical layer 6 plays a crucial role in sensorimotor coordination and integration through functionally segregated circuits linking intracortical and subcortical areas. However, because of the high neuronal heterogeneity and sparse intralaminar connectivity data on the cell-type specific synaptic microcircuits in layer 6 remain few and far between. To address this issue, whole-cell recordings combined with morphological reconstructions have been used to identify morphoelectric types of layer 6A pyramidal cells (PCs) in rat barrel cortex. Cortico-thalamic (CT), corticocortical (CC) and cortico-claustral (CCla) pyramidal cells have been distinguished based on to their distinct dendritic and axonal morphologies as well as their different electrophysiological properties. Here we demonstrate that these three types of layer 6A pyramidal cells innervate neighboring excitatory neurons with distinct synaptic properties: CT PCs establish weak facilitating synapses to other L6A PCs; CC PCs form synapses of moderate efficacy; while synapses made by putative CCla PCs display the highest release probability and a marked short-term depression. Furthermore, for excitatory-inhibitory synaptic connections in layer 6 we were able to show that both the presynaptic PC type and the postsynaptic interneuron type govern the dynamic properties of the of the respective synaptic connections. We have identified a functional division of local layer 6A excitatory microcircuits which may be responsible of the differential temporal engagement of layer 6 feed-forward and feedback networks. Our results provides a basis for further investigations on the long-range cortico-cortical, cortico-thalamic and cortico-claustral pathways.


2017 ◽  
Vol 117 (1) ◽  
pp. 148-162 ◽  
Author(s):  
Samuel A. Neymotin ◽  
Benjamin A. Suter ◽  
Salvador Dura-Bernal ◽  
Gordon M. G. Shepherd ◽  
Michele Migliore ◽  
...  

Corticospinal neurons (SPI), thick-tufted pyramidal neurons in motor cortex layer 5B that project caudally via the medullary pyramids, display distinct class-specific electrophysiological properties in vitro: strong sag with hyperpolarization, lack of adaptation, and a nearly linear frequency-current ( F– I) relationship. We used our electrophysiological data to produce a pair of large archives of SPI neuron computer models in two model classes: 1) detailed models with full reconstruction; and 2) simplified models with six compartments. We used a PRAXIS and an evolutionary multiobjective optimization (EMO) in sequence to determine ion channel conductances. EMO selected good models from each of the two model classes to form the two model archives. Archived models showed tradeoffs across fitness functions. For example, parameters that produced excellent F– I fit produced a less-optimal fit for interspike voltage trajectory. Because of these tradeoffs, there was no single best model but rather models that would be best for particular usages for either single neuron or network explorations. Further exploration of exemplar models with strong F– I fit demonstrated that both the detailed and simple models produced excellent matches to the experimental data. Although dendritic ion identities and densities cannot yet be fully determined experimentally, we explored the consequences of a demonstrated proximal to distal density gradient of Ih, demonstrating that this would lead to a gradient of resonance properties with increased resonant frequencies more distally. We suggest that this dynamical feature could serve to make the cell particularly responsive to major frequency bands that differ by cortical layer. NEW & NOTEWORTHY We developed models of motor cortex corticospinal neurons that replicate in vitro dynamics, including hyperpolarization-induced sag and realistic firing patterns. Models demonstrated resonance in response to synaptic stimulation, with resonance frequency increasing in apical dendrites with increasing distance from soma, matching the increasing oscillation frequencies spanning deep to superficial cortical layers. This gradient may enable specific corticospinal neuron dendrites to entrain to relevant oscillations in different cortical layers, contributing to appropriate motor output commands.


2015 ◽  
Vol 112 (15) ◽  
pp. E1956-E1965 ◽  
Author(s):  
Andreas A. Kardamakis ◽  
Kazuya Saitoh ◽  
Sten Grillner

The optic tectum (called superior colliculus in mammals) is critical for eye–head gaze shifts as we navigate in the terrain and need to adapt our movements to the visual scene. The neuronal mechanisms underlying the tectal contribution to stimulus selection and gaze reorientation remains, however, unclear at the microcircuit level. To analyze this complex—yet phylogenetically conserved—sensorimotor system, we developed a novel in vitro preparation in the lamprey that maintains the eye and midbrain intact and allows for whole-cell recordings from prelabeled tectal gaze-controlling cells in the deep layer, while visual stimuli are delivered. We found that receptive field activation of these cells provide monosynaptic retinal excitation followed by local GABAergic inhibition (feedforward). The entire remaining retina, on the other hand, elicits only inhibition (surround inhibition). If two stimuli are delivered simultaneously, one inside and one outside the receptive field, the former excitatory response is suppressed. When local inhibition is pharmacologically blocked, the suppression induced by competing stimuli is canceled. We suggest that this rivalry between visual areas across the tectal map is triggered through long-range inhibitory tectal connections. Selection commands conveyed via gaze-controlling neurons in the optic tectum are, thus, formed through synaptic integration of local retinotopic excitation and global tectal inhibition. We anticipate that this mechanism not only exists in lamprey but is also conserved throughout vertebrate evolution.


2007 ◽  
Vol 97 (2) ◽  
pp. 1196-1208 ◽  
Author(s):  
Wen-Jun Gao

Recent studies have indicated that impaired neural circuitry in the prefrontal cortex is a prominent feature of the neuropathology of schizophrenia. Clozapine is one of the most effective antipsychotic drugs used for this debilitating disease. Despite its effectiveness, the mechanism by which clozapine acts on prefrontal cortical circuitry remains poorly understood. In this study, in vitro multiple whole cell recordings were performed in slices of the ferret prefrontal cortex. Clozapine, which effectively inhibited the spontaneous synchronized network activities in the prefrontal neurons, achieved the suppressive effect by decreasing the recurrent excitation among pyramidal neurons and by enhancing the inhibitory inputs onto pyramidal cells through a likely network mechanism. Indeed, under the condition of disinhibition, the depressing effects were reversed and clozapine enhanced the recurrent excitation. These results suggest that the therapeutic actions of clozapine in alleviating the positive symptoms of schizophrenia are achieved, at least partially, through the readjustment of synaptic balance between the excitation and inhibition in the prefrontal cortical circuitry.


1997 ◽  
Vol 77 (5) ◽  
pp. 2427-2445 ◽  
Author(s):  
Heath S. Lukatch ◽  
M. Bruce Maciver

Lukatch, Heath S. and M. Bruce MacIver. Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro. J. Neurophysiol. 77: 2427–2445, 1997. Rat neocortical brain slices generated rhythmic extracellular field [microelectroencephalogram (micro-EEG)] oscillations at theta frequencies (3–12 Hz) when exposed to pharmacological conditions that mimicked endogenous ascending cholinergic and GABAergic inputs. Use of the specific receptor agonist and antagonist carbachol and bicuculline revealed that simultaneous muscarinic receptor activation and γ-aminobutyric acid-A (GABAA)-mediated disinhibition werenecessary to elicit neocortical oscillations. Rhythmic activity was independent of GABAB receptor activation, but required intact glutamatergic transmission, evidenced by blockade or disruption of oscillations by 6-cyano-7-nitroquinoxaline-2,3-dione and (±)-2-amino-5-phosphonovaleric acid, respectively. Multisite mapping studies showed that oscillations were localized to areas 29d and 18b (Oc2MM) and parts of areas 18a and 17. Peak oscillation amplitudes occurred in layer 2/3, and phase reversals were observed in layers 1 and 5. Current source density analysis revealed large-amplitude current sinks and sources in layers 2/3 and 5, respectively. An initial shift in peak inward current density from layer 1 to layer 2/3 indicated that two processes underlie an initial depolarization followed by oscillatory activity. Laminar transections localized oscillation-generating circuitry to superficial cortical layers and sharp-spike-generating circuitry to deep cortical layers. Whole cell recordings identified three distinct cell types based on response properties during rhythmic micro-EEG activity: oscillation-on (theta-on) and -off (theta-off) neurons, and transiently depolarizing glial cells. Theta-on neurons displayed membrane potential oscillations that increased in amplitude with hyperpolarization (from −30 to −90 mV). This, taken together with a glutamate antagonist-induced depression of rhythmic micro-EEG activity, indicated that cholinergically driven neocortical oscillations require excitatory synaptic transmission. We conclude that under the appropriate pharmacological conditions, neocortical brain slices were capable of producing localized theta frequency oscillations. Experiments examining oscillation physiology, pharmacology, and topography demonstrated that neocortical brain slice oscillations share many similarities with the in vivo and in vitro theta EEG activity recorded in other brain regions.


2000 ◽  
Vol 11 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Lucy A. Stebbings ◽  
Martin G. Todman ◽  
Pauline Phelan ◽  
Jonathan P. Bacon ◽  
Jane A. Davies

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes,Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In pairedXenopus oocytes, the injection of Dm-inx2mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression ofDm-inx2 in vivo has limited effects on the viability ofDrosophila, and animals ectopically expressingDm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.


Sign in / Sign up

Export Citation Format

Share Document