scholarly journals Functional interactions between post-translationally modified amino acids of methyl-coenzyme M reductase in Methanosarcina acetivorans

2019 ◽  
Author(s):  
Dipti D Nayak ◽  
Andi Liu ◽  
Neha Agrawal ◽  
Roy Rodriguez-Carerro ◽  
Shi-Hui Dong ◽  
...  

AbstractMethyl-coenzyme M reductase (MCR) plays an important role in mediating global levels of methane by catalyzing a reversible reaction that leads to the production or consumption of this potent greenhouse gas in methanogenic and methanotrophic archaea. In methanogenic archaea, the alpha subunit of MCR (McrA) typically contains four to six post-translationally modified amino acids near the active site. Recent studies have identified genes that install two of these modifications (thioglycine and 5-(S)-methylarginine), yet little is known about the installation and function of the remaining post-translationally modified residues. Here, we provide in vivo evidence that a dedicated SAM-dependent methyltransferase encoded by a gene we designated mcmA is responsible for formation of S-methylcysteine in Methanosarcina acetivorans McrA. Phenotypic analysis of mutants incapable of cysteine methylation suggests that the S-methylcysteine residue plays an important role in adaptation to a mesophilic lifestyle. To examine the interactions between the S-methylcysteine residue and the previously characterized thioglycine, 5-(S)-methylarginine modifications, we generated M. acetivorans mutants lacking the three known modification genes in all possible combinations. Phenotypic analyses revealed complex, physiologically relevant interactions between the modified residues, which alter the thermal stability of MCR in a combinatorial fashion that is not readily predictable from the phenotypes of single mutants. Surprisingly, high-resolution crystal structures of the various unmodified MCRs were indistinguishable from the fully modified enzyme, suggesting that interactions between the post-translationally modified residues do not exert a major influence on the physical structure of the enzyme, but rather serve to fine-tune the activity and efficiency of MCR.

PLoS Biology ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. e3000507 ◽  
Author(s):  
Dipti D. Nayak ◽  
Andi Liu ◽  
Neha Agrawal ◽  
Roy Rodriguez-Carerro ◽  
Shi-Hui Dong ◽  
...  

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Jingwei Cai ◽  
Robert G. Nichols ◽  
Imhoi Koo ◽  
Zachary A. Kalikow ◽  
Limin Zhang ◽  
...  

ABSTRACTThe gut microbiota is susceptible to modulation by environmental stimuli and therefore can serve as a biological sensor. Recent evidence suggests that xenobiotics can disrupt the interaction between the microbiota and host. Here, we describe an approach that combinesin vitromicrobial incubation (isolated cecal contents from mice), flow cytometry, and mass spectrometry- and1H nuclear magnetic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced microbial toxicity. Tempol, a stabilized free radical scavenger known to remodel the microbial community structure and functionin vivo, was studied to assess its direct effect on the gut microbiota. The microbiota was isolated from mouse cecum and was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry data suggested that short-term tempol exposure to the microbiota is associated with disrupted membrane physiology as well as compromised metabolic activity. Mass spectrometry and NMR metabolomics revealed that tempol exposure significantly disrupted microbial metabolic activity, specifically indicated by changes in short-chain fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oligosaccharides. In addition, a mouse study with tempol (5 days gavage) showed similar microbial physiologic and metabolic changes, indicating that thein vitroapproach reflectedin vivoconditions. Our results, through evaluation of microbial viability, physiology, and metabolism and a comparison ofin vitroandin vivoexposures with tempol, suggest that physiologic and metabolic phenotyping can provide unique insight into gut microbiota toxicity.IMPORTANCEThe gut microbiota is modulated physiologically, compositionally, and metabolically by xenobiotics, potentially causing metabolic consequences to the host. We recently reported that tempol, a stabilized free radical nitroxide, can exert beneficial effects on the host through modulation of the microbiome community structure and function. Here, we investigated a multiplatform phenotyping approach that combines high-throughput global metabolomics with flow cytometry to evaluate the direct effect of tempol on the microbiota. This approach may be useful in deciphering how other xenobiotics directly influence the microbiota.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Tristan Wagner ◽  
Carl-Eric Wegner ◽  
Jörg Kahnt ◽  
Ulrich Ermler ◽  
Seigo Shima

ABSTRACT The phylogenetically diverse family of methanogenic archaea universally use methyl coenzyme M reductase (MCR) for catalyzing the final methane-forming reaction step of the methanogenic energy metabolism. Some methanogens of the orders Methanobacteriales and Methanococcales contain two isoenzymes. Comprehensive phylogenetic analyses on the basis of all three subunits grouped MCRs from Methanobacteriales and Methanococcales into three distinct types: (i) MCRs from Methanobacteriales, (ii) MCRs from Methanobacteriales and Methanococcales, and (iii) MCRs from Methanococcales. The first and second types contain MCR isoenzymes I and II from Methanothermobacter marburgensis, respectively; therefore, they were designated MCR type I and type II and accordingly; the third one was designated MCR type III. For comparison with the known MCR type I and type II structures, we determined the structure of MCR type III from Methanotorris formicicus and Methanothermococcus thermolithotrophicus. As predicted, the three MCR types revealed highly similar overall structures and virtually identical active site architectures reflecting the chemically challenging mechanism of methane formation. Pronounced differences were found at the protein surface with respect to loop geometries and electrostatic properties, which also involve the entrance of the active-site funnel. In addition, the C-terminal end of the γ-subunit is prolonged by an extra helix after helix γ8 in MCR type II and type III, which is, however, differently arranged in the two MCR types. MCR types I, II, and III share most of the posttranslational modifications which appear to fine-tune the enzymatic catalysis. Interestingly, MCR type III lacks the methyl-cysteine but possesses in subunit α of M. formicicus a 6-hydroxy-tryptophan, which thus far has been found only in the α-amanitin toxin peptide but not in proteins. IMPORTANCE Methyl coenzyme M reductase (MCR) represents a prime target for the mitigation of methane releases. Phylogenetic analyses of MCRs suggested several distinct sequence clusters; those from Methanobacteriales and Methanococcales were subdivided into three types: MCR type I from Methanobacteriales, MCR type II from Methanobacteriales and Methanococcales, and the newly designated MCR type III exclusively from Methanococcales. We determined the first X-ray structures for an MCR type III. Detailed analyses revealed substantial differences between the three types only in the peripheral region. The subtle modifications identified and electrostatic profiles suggested enhanced substrate binding for MCR type III. In addition, MCR type III from Methanotorris formicicus contains 6-hydroxy-tryptophan, a new posttranslational modification that thus far has been found only in the α-amanitin toxin.


1986 ◽  
Vol 7 (2-3) ◽  
pp. 383-387 ◽  
Author(s):  
Dorothe Ankel-Fuchs ◽  
Rudolf Hüster ◽  
Erhard Mörschel ◽  
Simon P.J. Albracht ◽  
Rudolf K. Thauer

2000 ◽  
Vol 275 (6) ◽  
pp. 3755-3760 ◽  
Author(s):  
Thorsten Selmer ◽  
Jörg Kahnt ◽  
Marcel Goubeaud ◽  
Seigo Shima ◽  
Wolfgang Grabarse ◽  
...  

2021 ◽  
Author(s):  
Jayashree Pohnerkar ◽  
Krishma Tailor ◽  
Prarthi Sagar ◽  
Keyur Dave

The guanosine nucleotide derivatives ppGpp and pppGpp are central to the remarkable capacity of bacteria to adapt to fluctuating environment and metabolic perturbations. These alarmones are synthesized by two proteins, RelA and SpoT in E. coli and the activities of each of the two enzymes are highly regulated for homeostatic control of (p)ppGpp levels in the cell. Although the domain structure and function of RelA are well defined, the findings of this study unfold the regulatory aspect of RelA that is possibly relevant in vivo. We uncover here the importance of the N-terminal 1-119 amino acids of the enzymatically compromised (p)ppGpp hydrolytic domain (HD) of monofunctional RelA for the (p)ppGpp mediated regulation of RelA-CTD function. We find that even moderate level expression of RelA appreciably reduces growth when the basal levels of (p)ppGpp in the cells are higher than in the wild type, an effect independent of its ability to synthesize (p)ppGpp. This is evidenced by the growth inhibitory effects of oversynthesis of the RelA-CTD in the relA+ strain but not in relA null mutant, suggesting the requirement of the functional RelA protein for basal level synthesis of (p)ppGpp, accordingly corroborated by the restoration of the growth inhibitory effects of the RelA-CTD expression in the relA1 spoT202 mutant. The N-terminal 119 amino acids of RelA fused in-frame with the RelA-CTD, both from 406-744 amino acids (including TGS) and from 454-744 amino acids (sans TGS) caused growth inhibition only in spoT1 and spoT202 relA1 mutants, uncovering the hitherto unrealized (p)ppGpp-dependent regulation of RelA-CTD function. An incremental rise in the (p)ppGpp levels is proposed to progressively modulate the interaction of RelA-CTD with the ribosomes, with possible implications in the feedback regulation of the N-terminal (p)ppGpp synthesis function, a proposal that best explains the nonlinear relationship between (p)ppGpp synthesis and increased ratio of RelA:ribosomes, both in vitro as well as in vivo.


2017 ◽  
Author(s):  
Dipti D. Nayak ◽  
Nilkamal Mahanta ◽  
Douglas A. Mitchell ◽  
William W. Metcalf

AbstractThe enzyme methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes a reversible reaction involved in the production and consumption of the potent greenhouse gas methane. The α subunit of this enzyme (McrA) contains several unusual post-translational modifications, including an exceptionally rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosynthesis of thioamide-containing natural products, we hypothesized that the archaealtfuAandycaOgenes would be responsible for post-translational installation of thioglycine into McrA. Mass spectrometric characterization of McrA in a ΔycaO-tfuAmutant of the methanogenic archaeonMethanosarcina acetivoransrevealed the presence of glycine, rather than thioglycine, supporting this hypothesis. Physiological characterization of this mutant suggested a new role for the thioglycine modification in enhancing protein stability, as opposed to playing a direct catalytic role. The universal conservation of this modification suggests that MCR arose in a thermophilic ancestor.


2003 ◽  
Vol 69 (10) ◽  
pp. 6047-6055 ◽  
Author(s):  
K. Pflüger ◽  
S. Baumann ◽  
G. Gottschalk ◽  
W. Lin ◽  
H. Santos ◽  
...  

ABSTRACT The compatible solute N ε-acetyl-β-lysine is unique to methanogenic archaea and is produced under salt stress only. However, the molecular basis for the salt-dependent regulation of N ε-acetyl-β-lysine formation is unknown. Genes potentially encoding lysine-2,3-aminomutase (ablA) and β-lysine acetyltransferase (ablB), which are assumed to catalyze N ε-acetyl-β-lysine formation from α-lysine, were identified on the chromosomes of the methanogenic archaea Methanosarcina mazei Gö1, Methanosarcina acetivorans, Methanosarcina barkeri, Methanococcus jannaschii, and Methanococcus maripaludis. The order of the two genes was identical in the five organisms, and the deduced proteins were very similar, indicating a high degree of conservation of structure and function. Northern blot analysis revealed that the two genes are organized in an operon (termed the abl operon) in M. mazei Gö1. Expression of the abl operon was strictly salt dependent. The abl operon was deleted in the genetically tractable M. maripaludis. Δabl mutants of M. maripaludis no longer produced N ε-acetyl-β-lysine and were incapable of growth at high salt concentrations, indicating that the abl operon is essential for N ε-acetyl-β-lysine synthesis. These experiments revealed the first genes involved in the biosynthesis of compatible solutes in methanogens.


Sign in / Sign up

Export Citation Format

Share Document