scholarly journals De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines

2019 ◽  
Author(s):  
Bráulio S.M.L. Silva ◽  
Pedro Heringer ◽  
Guilherme B. Dias ◽  
Marta Svartman ◽  
Gustavo C.S. Kuhn

AbstractSatellite DNAs are among the most abundant repetitive DNAs found in eukaryote genomes, where they participate in a variety of biological roles, from being components of important chromosome structures to gene regulation. Experimental methodologies used before the genomic era were not sufficient despite being too laborious and time-consuming to recover the collection of all satDNAs from a genome. Today, the availability of whole sequenced genomes combined with the development of specific bioinformatic tools are expected to foster the identification of virtually all of the “satellitome” from a particular species. While whole genome assemblies are important to obtain a global view of genome organization, most assemblies are incomplete and lack repetitive regions. Here, we applied short-read sequencing and similarity clustering in order to perform a de novo identification of the most abundant satellite families in two Drosophila species from the virilis group: Drosophila virilis and D. americana. These species were chosen because they have been used as a model to understand satDNA biology since early 70’s. We combined computational tandem repeat detection via similarity-based read clustering (implemented in Tandem Repeat Analyzer pipeline – “TAREAN”) with data from the literature and chromosome mapping to obtain an overview of satDNAs in D. virilis and D. americana. The fact that all of the abundant tandem repeats we detected were previously identified in the literature allowed us to evaluate the efficiency of TAREAN in correctly identifying true satDNAs. Our results indicate that raw sequencing reads can be efficiently used to detect satDNAs, but that abundant tandem repeats present in dispersed arrays or associated with transposable elements are frequent false positives. We demonstrate that TAREAN with its parent method RepeatExplorer, may be used as resources to detect tandem repeats associated with transposable elements and also to reveal families of dispersed tandem repeats.

PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0223466 ◽  
Author(s):  
Bráulio S. M. L. Silva ◽  
Pedro Heringer ◽  
Guilherme B. Dias ◽  
Marta Svartman ◽  
Gustavo C. S. Kuhn

2016 ◽  
Author(s):  
Paul Bilinski ◽  
Yonghua Han ◽  
Matthew B Hufford ◽  
Anne Lorant ◽  
Pingdong Zhang ◽  
...  

In studying genomic architecture, highly repetitive regions have historically posed a challenge when investigating sequence variation and content. High-throughput sequencing has enabled researchers to use whole-genome shotgun sequencing to estimate the abundance of repetitive sequence, and these methodologies have been recently applied to centromeres. Here, we utilize sequence assembly and read mapping to identify and quantify the genomic abundance of different tandem repeat sequences. Previous research has posited that the highest abundance tandem repeat in eukaryotic genomes is often the centromeric repeat, and we pair our bioinformatic pipeline with fluorescent in-situ hybridization data to test this hypothesis. We find that de novo assembly and bioinformatic filters can successfully identify repeats with homology to known tandem repeats. Fluorescent in-situ hybridization, however, shows that de novo assembly fails to identify novel centromeric repeats, instead identifying other potentially important repetitive sequences. Together, our results test the applicability and limitations of using de novo repeat assembly of tandem repeats to identify novel centromeric repeats. Building on our findings of genomic composition, we also set forth a method for exploring the repetitive regions of non-model genomes whose diversity limits the applicability of established genetic resources.


2020 ◽  
Vol 10 (10) ◽  
pp. 3811-3819 ◽  
Author(s):  
Austin Compton ◽  
Jiangtao Liang ◽  
Chujia Chen ◽  
Varvara Lukyanchikova ◽  
Yumin Qi ◽  
...  

Chromosome level assemblies are accumulating in various taxonomic groups including mosquitoes. However, even in the few reference-quality mosquito assemblies, a significant portion of the heterochromatic regions including telomeres remain unresolved. Here we produce a de novo assembly of the New World malaria mosquito, Anopheles albimanus by integrating Oxford Nanopore sequencing, Illumina, Hi-C and optical mapping. This 172.6 Mbps female assembly, which we call AalbS3, is obtained by scaffolding polished large contigs (contig N50 = 13.7 Mbps) into three chromosomes. All chromosome arms end with telomeric repeats, which is the first in mosquito assemblies and represents a significant step toward the completion of a genome assembly. These telomeres consist of tandem repeats of a novel 30-32 bp Telomeric Repeat Unit (TRU) and are confirmed by analyzing the termini of long reads and through both chromosomal in situ hybridization and a Bal31 sensitivity assay. The AalbS3 assembly included previously uncharacterized centromeric and rDNA clusters and more than doubled the content of transposable elements and other repetitive sequences. This telomere-to-telomere assembly, although still containing gaps, represents a significant step toward resolving biologically important but previously hidden genomic components. The comparison of different scaffolding methods will also inform future efforts to obtain reference-quality genomes for other mosquito species.


2015 ◽  
Author(s):  
Alejandro Hernandez Wences ◽  
Michael Schatz

Genome assembly projects typically run multiple algorithms in an attempt to find the single best assembly, although those assemblies often have complementary, if untapped, strengths and weaknesses. We present our metassembler algorithm that merges multiple assemblies of a genome into a single superior sequence. We apply it to the four genomes from the Assemblathon competitions and show it consistently and substantially improves the contiguity and quality of each assembly. We also develop guidelines for metassembly by systematically evaluating 120 permutations of merging the top 5 assemblies of the first Assemblathon competition. The software is open-source at http://metassembler.sourceforge.net.


2016 ◽  
Author(s):  
Thomas Willems ◽  
Dina Zielinski ◽  
Assaf Gordon ◽  
Melissa Gymrek ◽  
Yaniv Erlich

AbstractShort tandem repeats (STRs) are highly variable elements that play a pivotal role in multiple genetic diseases, population genetics applications, and forensic casework. However, STRs have proven problematic to genotype from high-throughput sequencing data. Here, we describe HipSTR, a novel haplotype-based method for robustly genotyping, haplotyping, and phasing STRs from whole genome sequencing data and report a genome-wide analysis and validation of de novo STR mutations.


Author(s):  
Elverson Soares de Melo ◽  
Gabriel da Luz Wallau

AbstractTransposable elements (TEs) are a set of mobile elements within a genome. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, varying substantially among Anopheles species (0.13%–19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been continuously exchanged by horizontal transfer (212 TE families of 18 different superfamilies) among mosquitoes since 30 million years ago, representing around 6% of the genome in Aedes genomes and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more 32,000 genomes, we also uncover transfers between mosquitoes and two different Phyla—Cnidaria and Nematoda—and two subphyla—Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element of irritans subfamily among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are constantly exchanged by common phenomena of horizontal transfers among mosquitoes, influencing genome variation and contributing to genome size expansion.Author SummaryMost eukaryotes have DNA fragments inside their genome that can multiply by inserting themselves in other regions of the genome, generating variability. These fragments are called Transposable Elements (TEs). Since they are a constituent part of the eukaryote genomes, these pieces of DNA are usually inherited vertically by the offspring. To avoid damage to the genome caused by the replication and insertion of TEs, organisms usually control them, leading to their inactivation. However, TEs sometimes get out of control and invade other species through a horizontal transfer mechanism. This dynamic is not known in mosquitoes, a group of organisms that acts as vectors of many human diseases. We collected mosquito genomes available in public databases and characterized the whole content of TEs. Using a statistic supported method, we investigate TE relations among mosquitoes and discover that horizontal transfers of transposons are common and occurred in the last 30 million years among these species. Although not as common as transfers among closely related species, transposon transfer to distant species also occur. We also identify a parasite, a filarial worm, that may have facilitated the transfer of TE to many mosquitoes. Together, horizontally transferred TEs contribute to increasing mosquito genome size and variation.


GigaScience ◽  
2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Graham J Etherington ◽  
Darren Heavens ◽  
David Baker ◽  
Ashleigh Lister ◽  
Rose McNelly ◽  
...  

Abstract Background Whilst much sequencing effort has focused on key mammalian model organisms such as mouse and human, little is known about the relationship between genome sequencing techniques for non-model mammals and genome assembly quality. This is especially relevant to non-model mammals, where the samples to be sequenced are often degraded and of low quality. A key aspect when planning a genome project is the choice of sequencing data to generate. This decision is driven by several factors, including the biological questions being asked, the quality of DNA available, and the availability of funds. Cutting-edge sequencing technologies now make it possible to achieve highly contiguous, chromosome-level genome assemblies, but rely on high-quality high molecular weight DNA. However, funding is often insufficient for many independent research groups to use these techniques. Here we use a range of different genomic technologies generated from a roadkill European polecat (Mustela putorius) to assess various assembly techniques on this low-quality sample. We evaluated different approaches for de novo assemblies and discuss their value in relation to biological analyses. Results Generally, assemblies containing more data types achieved better scores in our ranking system. However, when accounting for misassemblies, this was not always the case for Bionano and low-coverage 10x Genomics (for scaffolding only). We also find that the extra cost associated with combining multiple data types is not necessarily associated with better genome assemblies. Conclusions The high degree of variability between each de novo assembly method (assessed from the 7 key metrics) highlights the importance of carefully devising the sequencing strategy to be able to carry out the desired analysis. Adding more data to genome assemblies does not always result in better assemblies, so it is important to understand the nuances of genomic data integration explained here, in order to obtain cost-effective value for money when sequencing genomes.


2019 ◽  
Author(s):  
Graham J Etherington ◽  
Darren Heavens ◽  
David Baker ◽  
Ashleigh Lister ◽  
Rose McNelly ◽  
...  

AbstractBackgroundWhilst much sequencing effort has focused on key mammalian model organisms such as mouse and human, little is known about the correlation between genome sequencing techniques for non-model mammals and genome assembly quality. This is especially relevant to non-model mammals, where the samples to be sequenced are often degraded and low quality. A key aspect when planning a genome project is the choice of sequencing data to generate. This decision is driven by several factors, including the biological questions being asked, the quality of DNA available, and the availability of funds. Cutting-edge sequencing technologies now make it possible to achieve highly contiguous, chromosome-level genome assemblies, but relies on good quality high-molecular-weight DNA. The funds to generate and combining these data are often only available within large consortiums and sequencing initiatives, and are often not affordable for many independent research groups. For many researchers, value-for-money is a key factor when considering the generation of genomic sequencing data. Here we use a range of different genomic technologies generated from a roadkill European Polecat (Mustela putorius) to assess various assembly techniques on this low-quality sample. We evaluated different approaches for de novo assemblies and discuss their value in relation to biological analyses.ResultsGenerally, assemblies containing more data types achieved better scores in our ranking system. However, when accounting for misassemblies, this was not always the case for Bionano and low-coverage 10x Genomics (for scaffolding only). We also find that the extra cost associated with combining multiple data types is not necessarily associated with better genome assemblies.ConclusionsThe high degree of variability between each de novo assembly method (assessed from the seven key metrics) highlights the importance of carefully devising the sequencing strategy to be able to carry out the desired analysis. Adding more data to genome assemblies not always results in better assemblies so it is important to understand the nuances of genomic data integration explained here, in order to obtain cost-effective value-for-money when sequencing genomes.


2018 ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Shyam Gopalakrishan ◽  
Christian Carøe ◽  
David E. Alquezar-Planas ◽  
Anne Ahlmann Nielsen ◽  
...  

AbstractIn recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular, the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted-enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.), and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome, and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms – enabling the exploration of diverse evolutionary and conservation questions.


2016 ◽  
Vol 13 (1) ◽  
pp. 152-172 ◽  
Author(s):  
M Moniruzzaman ◽  
R Khatun ◽  
Zahira Yaakob ◽  
M S Khan ◽  
A A Mintoo

The tandem repeats, conserved short segments of DNA, which are found in all prokaryotic and eukaryotic genomes, are called microsatellites. It is also known as variable number tandem repeats (VNTRs), simple sequence repeats (SSRs) and short tandem repeats (STRs). Microsatellites present in both coding and non-coding regions of a genome. The high polymorphism of microsatellites makes them powerful genetic markers for genome mapping of many organisms. It is also suitable for ancient and forensic DNA studies for population genetics and conservation of biological resources. The major disadvantage of microsatellites is that for the first time they need to be isolated de novo from most species being examined. The task of microsatellite isolation is quite cumbersome involving in terms of effort and time, because it traditionally involves screening of genomic libraries. Cross-species amplification, Mining microsatellites from nucleotide sequenced data and Genomic library- based method are general methods of microsatellite isolation.  Cross-species method may not effective for all species, Data mining is not applicable if there is no or limited data of DNA sequence. Genomic library based method is the best choice. Traditional protocol, primer extension protocol, selective hybridization, and Fast Isolation by AFLP of Sequences containing repeats (FIASCO) are the protocols of microsatellite development based on genomic library.  FIASCO is the best protocol ever developed.The Agriculturists 2015; 13(1) 152-172


Sign in / Sign up

Export Citation Format

Share Document