scholarly journals Cortico-cortical feedback from V2 exerts a powerful influence over the visually evoked local field potential and associated spike timing in V1

2019 ◽  
Author(s):  
Till S. Hartmann ◽  
Sruti Raja ◽  
Stephen G. Lomber ◽  
Richard T. Born

AbstractThe local field potential (LFP) is generally thought to be dominated by synaptic activity within a few hundred microns of the recording electrode. The sudden onset of a visual stimulus causes a large downward deflection of the LFP recorded in primary visual cortex, known as a visually evoked potential (VEP), followed by rhythmic oscillations in the gamma range (30-80 Hz) that are often in phase with action potentials of nearby neurons. By inactivating higher visual areas that send feedback projections to V1, we produced a large decrease in amplitude of the VEP, and a strong attenuation of gamma rhythms in both the LFP and multi-unit activity, despite an overall increase in neuronal spike rates. Our results argue that much of the recurrent, rhythmic activity measured in V1 is strongly gated by feed-back from higher areas, consistent with models of coincidence detection that result in burst firing by layer 5 pyramidal neurons.

2011 ◽  
Vol 12 (S1) ◽  
Author(s):  
Alberto Mazzoni ◽  
Christoph Kayser ◽  
Yusuke Murayama ◽  
Juan Martinez ◽  
Rodrigo Quian Quiroga ◽  
...  

2015 ◽  
Vol 113 (5) ◽  
pp. 1520-1532 ◽  
Author(s):  
Mojtaba Seyedhosseini ◽  
S. Shushruth ◽  
Tyler Davis ◽  
Jennifer M. Ichida ◽  
Paul A. House ◽  
...  

The local field potential (LFP) is of growing importance in neurophysiology as a metric of network activity and as a readout signal for use in brain-machine interfaces. However, there are uncertainties regarding the kind and visual field extent of information carried by LFP signals, as well as the specific features of the LFP signal conveying such information, especially under naturalistic conditions. To address these questions, we recorded LFP responses to natural images in V1 of awake and anesthetized macaques using Utah multielectrode arrays. First, we have shown that it is possible to identify presented natural images from the LFP responses they evoke using trained Gabor wavelet (GW) models. Because GW models were devised to explain the spiking responses of V1 cells, this finding suggests that local spiking activity and LFPs (thought to reflect primarily local synaptic activity) carry similar visual information. Second, models trained on scalar metrics, such as the evoked LFP response range, provide robust image identification, supporting the informative nature of even simple LFP features. Third, image identification is robust only for the first 300 ms following image presentation, and image information is not restricted to any of the spectral bands. This suggests that the short-latency broadband LFP response carries most information during natural scene viewing. Finally, best image identification was achieved by GW models incorporating information at the scale of ∼0.5° in size and trained using four different orientations. This suggests that during natural image viewing, LFPs carry stimulus-specific information at spatial scales corresponding to few orientation columns in macaque V1.


2018 ◽  
Vol 119 (1) ◽  
pp. 274-289 ◽  
Author(s):  
Nicolas Fourcaud-Trocmé ◽  
Virginie Briffaud ◽  
Marc Thévenet ◽  
Nathalie Buonviso ◽  
Corine Amat

In mammals, olfactory bulb (OB) dynamics are paced by slow and fast oscillatory rhythms at multiple levels: local field potential, spike discharge, and/or membrane potential oscillations. Interactions between these levels have been well studied for the slow rhythm linked to animal respiration. However, less is known regarding rhythms in the fast beta (10–35 Hz) and gamma (35–100 Hz) frequency ranges, particularly at the membrane potential level. Using a combination of intracellular and extracellular recordings in the OB of freely breathing rats, we show that beta and gamma subthreshold oscillations (STOs) coexist intracellularly and are related to extracellular local field potential (LFP) oscillations in the same frequency range. However, they are differentially affected by changes in cell excitability and by odor stimulation. This leads us to suggest that beta and gamma STOs may rely on distinct mechanisms: gamma STOs would mainly depend on mitral cell intrinsic resonance, while beta STOs could be mainly driven by synaptic activity. In a second study, we find that STO occurrence and timing are constrained by the influence of the slow respiratory rhythm on mitral and tufted cells. First, respiratory-driven excitation seems to favor gamma STOs, while respiratory-driven inhibition favors beta STOs. Second, the respiratory rhythm is needed at the subthreshold level to lock gamma and beta STOs in similar phases as their LFP counterparts and to favor the correlation between STO frequency and spike discharge. Overall, this study helps us to understand how the interaction between slow and fast rhythms at all levels of OB dynamics shapes its functional output. NEW & NOTEWORTHY In the mammalian olfactory bulb of a freely breathing anesthetized rat, we show that both beta and gamma membrane potential fast oscillation ranges exist in the same mitral and tufted (M/T) cell. Importantly, our results suggest they have different origins and that their interaction with the slow subthreshold oscillation (respiratory rhythm) is a key mechanism to organize their dynamics, favoring their functional implication in olfactory bulb information processing.


2017 ◽  
Vol 118 (6) ◽  
pp. 3345-3359 ◽  
Author(s):  
Nathaniel C. Wright ◽  
Mahmood S. Hoseini ◽  
Tansel Baran Yasar ◽  
Ralf Wessel

Cortical activity contributes significantly to the high variability of sensory responses of interconnected pyramidal neurons, which has crucial implications for sensory coding. Yet, largely because of technical limitations of in vivo intracellular recordings, the coupling of a pyramidal neuron’s synaptic inputs to the local cortical activity has evaded full understanding. Here we obtained excitatory synaptic conductance ( g) measurements from putative pyramidal neurons and local field potential (LFP) recordings from adjacent cortical circuits during visual processing in the turtle whole brain ex vivo preparation. We found a range of g-LFP coupling across neurons. Importantly, for a given neuron, g-LFP coupling increased at stimulus onset and then relaxed toward intermediate values during continued visual stimulation. A model network with clustered connectivity and synaptic depression reproduced both the diversity and the dynamics of g-LFP coupling. In conclusion, these results establish a rich dependence of single-neuron responses on anatomical, synaptic, and emergent network properties. NEW & NOTEWORTHY Cortical neurons are strongly influenced by the networks in which they are embedded. To understand sensory processing, we must identify the nature of this influence and its underlying mechanisms. Here we investigate synaptic inputs to cortical neurons, and the nearby local field potential, during visual processing. We find a range of neuron-to-network coupling across cortical neurons. This coupling is dynamically modulated during visual processing via biophysical and emergent network properties.


2018 ◽  
Vol 38 (26) ◽  
pp. 6011-6024 ◽  
Author(s):  
Torbjørn V. Ness ◽  
Michiel W.H. Remme ◽  
Gaute T. Einevoll

2019 ◽  
Author(s):  
Matthijs A. A. van der Meer ◽  
Jimmie M. Gmaz ◽  
J. Eric Carmichael

AbstractThe ventral striatum (vStr) is anatomically interconnected with brain structures that exhibit prominent rhythmic activity, suggesting that oscillations in ventral striatal activity are potentially informative about systems-level interactions between these structures. However, rhythmic activity in ventral striatal neurons during behavior has only been characterized piecemeal, with individual studies focusing on a single cell type or frequency band. We performed a comprehensive analysis of (1) rhythmic activity in vStr neurons without reference to the local field potential, and (2) average as well as time-resolved spike-field relationships. Spike train rhythmicity tended to be limited to low frequencies such as delta and theta, whereas spike-field relationships were seen across a broad spectrum of frequencies, with about 90% of neurons showing spike-field locking to at least one rhythm. Using a novel time-resolved generalized linear model approach, we further show that the contribution of local field potential (LFP) phase to spike timing is dynamic over time, and enhanced by the inclusion of the LFP from the hippocampus – a new measure of inter-area coupling. These results provide a foundation for a more accurate interpretation of the ventral striatal LFP, suggest the possibility of an oscillatory taxonomy of ventral striatal neurons, and provide a starting point for understanding how rhythmic activity links cell-, circuit-, and systems-level phenomena in the ventral striatum.Significance StatementOscillations in neural activity are ubiquitous in the brain, readily accessible in the clinic and the lab, and shared by humans and animals to facilitate translational work. The ventral striatum (vStr) is a promising target structure for such a rhythmic activity perspective, not in the least because its local field potential (LFP) shows prominent task-related oscillations across a range of frequencies. However, recent work has shown that major components of the vStr LFP are in fact generated elsewhere in the brain, raising the question of how the LFP relates to local spiking activity. Unlike previous studies that focused on a specific cell type or frequency band of interest, we characterize rhythmic activity across a full range range of frequencies and cell types, and include novel analyses appropriate for a non-local LFP. Our results provide a foundation for more accurate interpretation of the vStr LFP and a starting point for an oscillatory taxonomy of vStr neurons.


Author(s):  
Yuval Baumel ◽  
Dana Cohen

Understanding the relationship between the local field potential (LFP) and single neurons is essential if we are to understand network dynamics and the entrainment of neuronal activity. Here, we investigated the interaction between the LFP and single neurons recorded in the rat cerebellar nuclei (CN), which are part of the sensorimotor network, in freely moving rats. During movement, the LFP displayed persistent oscillations in the theta band frequency whereas CN neurons displayed intermittent oscillations in the same frequency band contingent on the instantaneous LFP power; the neurons oscillated primarily when the concurrent LFP power was either high or low. Quantification of the relative instantaneous frequency and phase locking showed that CN neurons exhibited phase locked rhythmic activity at a frequency similar to that of the LFP or at a shifted frequency during high and low LFP power, respectively. We suggest that this nonlinear interaction between cerebellar neurons and the LFP power, which occurs solely during movement, contributes to the shaping of cerebellar output patterns.


2016 ◽  
Vol 116 (4) ◽  
pp. 1986-1999 ◽  
Author(s):  
Agrita Dubey ◽  
Supratim Ray

Local field potential (LFP) is a valuable tool in understanding brain function and in brain machine-interfacing applications. However, there is no consensus on the spatial extent of the cortex that contributes to the LFP (its “spatial spread”), with different studies reporting values between a few hundred micrometers and several millimeters. Furthermore, the dependency of the spatial spread on frequency, which could reflect properties of the network architecture and extracellular medium, is not well studied, with theory and models predicting either “all-pass” (frequency-independent) or “low-pass” behavior. Surprisingly, we found the LFP spread to be “band-pass” in the primate primary visual cortex, with the greatest spread in the high-gamma range (60–150 Hz). This was accompanied by an increase in phase coherency across neighboring sites in the same frequency range, consistent with the findings of a recent model that reconciles previous studies by suggesting that spatial spread depends on neuronal correlations.


Sign in / Sign up

Export Citation Format

Share Document