The population genomics of structural variation in a songbird genus
AbstractStructural variation (SV) accounts for a substantial part of genetic mutations segregating across eukaryotic genomes with important medical and evolutionary implications. Here, we characterized SV across evolutionary time scales in the songbird genus Corvus using de novo assembly and read mapping approaches. Combining information from short-read (N = 127) and long-read re-sequencing data (N = 31) as well as from optical maps (N = 16) revealed a total of 201,738 insertions, deletions and inversions. Population genetic analysis of SV in the Eurasian crow speciation model revealed an evolutionary young (~530,000 years) cis-acting 2.25-kb retrotransposon insertion reducing expression of the NDP gene with consequences for premating isolation. Our results attest to the wealth of SV segregating in natural populations and demonstrate its evolutionary significance.