scholarly journals Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer

2019 ◽  
Author(s):  
Paul Murphy ◽  
Yingqi Xu ◽  
Sarah L. Rouse ◽  
Steve J. Matthews ◽  
J Carlos Penedo ◽  
...  

AbstractPost-translational modification of proteins with ubiquitin represents a widely used mechanism for cellular regulation. Ubiquitin is activated by an E1 enzyme, transferred to an E2 conjugating enzyme and covalently linked to substrates by one of an estimated 600 E3 ligases (1). RING E3 ligases play a pivotal role in selecting substrates and priming the ubiquitin loaded E2 (E2~Ub) for catalysis (2,3). RING E3 RNF4 is a SUMO targeted ubiquitin ligase (4) with important roles in arsenic therapy for cancer (4,5) and in DNA damage responses (6,7). RNF4 has a RING domain and a substrate recognition domain containing multiple SUMO Interaction Motifs (SIMs) embedded in a region thought to be intrinsically disordered (8). While molecular details of SUMO recognition by the SIMs (8–10) and RING engagement of ubiquitin loaded E2 (3,11–15) have been determined, the mechanism by which SUMO substrate is delivered to the RING to facilitate ubiquitin transfer is an important question to be answered. Here, we show that the intrinsically disordered substrate-recognition domain of RNF4 maintains the SIMs in a compact global architecture that facilitates SUMO binding, while a highly-basic region positions substrate for nucleophilic attack on RING-bound ubiquitin loaded E2. Contrary to our expectation that the substrate recognition domain of RNF4 was completely disordered, distance measurements using single molecule Fluorescence Resonance Energy Transfer (smFRET) and NMR paramagnetic relaxation enhancement (PRE) revealed that it adopts a defined conformation primed for SUMO interaction. Mutational and biochemical analysis indicated that electrostatic interactions involving the highly basic region linking the substrate recognition and RING domains juxtaposed those regions and mediated substrate ubiquitination. Our results offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.

2019 ◽  
Author(s):  
Emma Branigan ◽  
J. Carlos Penedo ◽  
Ronald T. Hay

AbstractUbiquitination is a eukaryotic post-translational modification that modulates a host of cellular processes1. Modification is mediated by an E1 activating enzyme (E1), an E2 conjugating enzyme (E2) and an E3 ligase (E3). The E1 catalyses formation of a highly reactive thioester linked conjugate between ubiquitin and E2 (E2~Ub)2. The largest class of ubiquitin E3 ligases, which is represented by RING E3s, bind both substrate and E2~Ub and facilitate transfer of ubiquitin from the E2 to substrate. Based on extensive structural analysis3–5 it has been proposed that RING E3s prime the E2~Ub conjugate for catalysis by locking it into a “closed” conformation where ubiquitin is folded back onto the E2 exposing the restrained thioester bond to attack by a substrate nucleophile. However the proposal that the RING dependent closed conformation of E2~Ub represents the active form that mediates ubiquitin transfer is a model that has yet to be experimentally tested. Here we use single molecule Förster Resonance Energy Transfer (smFRET) to test this hypothesis and demonstrate that ubiquitin is transferred from the closed conformation during an E3 catalysed reaction. Using Ubc13 as an E2, we designed a FRET labelled E2~Ub conjugate, which distinguishes between closed and alternative conformations. Firstly, we defined the high FRET state as the closed conformation using a stable isopeptide linked E2~Ub conjugate, while the low FRET state represents more open conformations. Secondly, we developed a real-time smFRET assay to monitor RING E3 catalysed ubiquitination with a thioester linked E2~Ub conjugate and determined the catalytically active conformation. Our results demonstrate that the reaction proceeds from the high FRET or closed conformation and confirm the hypothesis that the closed conformation is the active form of the conjugate. These findings are not only relevant to RING E3 catalysed ubiquitination but are also broadly applicable to E3 mediated ligation of other ubiquitin-like proteins (Ubls) to substrates.


2019 ◽  
Author(s):  
Miriam Girardini ◽  
Chiara Maniaci ◽  
Scott J. Hughes ◽  
Andrea Testa ◽  
Alessio Ciulli

<div> <div> <div> <p>The von Hippel-Lindau (VHL) and cereblon (CRBN) proteins are substrate recognition subunits of two ubiquitously expressed and biologically important Cullin RING E3 ubiquitin ligase complexes. VHL and CRBN are also the two most popular E3 ligases being recruited by bifunctional Proteolysis-targeting chimeras (PROTACs) to induce ubiquitination and subsequent proteasomal degradation of a target protein. Using homo-PROTACs, VHL and CRBN have been independently dimerized to induce their own degradation. Here we report the design, synthesis and cellular activity of VHL-CRBN hetero-dimerizing PROTACs featuring diverse conjugation patterns. We found that the most active compound 14a induced potent, rapid and profound preferential degradation of CRBN over VHL in cancer cell lines. At lower concentrations, weaker degradation of VHL was instead observed. This work demonstrates proof of concept of designing PROTACs to hijack different E3 ligases against each other, and highlights a powerful and generalizable proximity-induced strategy to achieve E3 ligase knockdown. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Miriam Girardini ◽  
Chiara Maniaci ◽  
Scott J. Hughes ◽  
Andrea Testa ◽  
Alessio Ciulli

<div> <div> <div> <p>The von Hippel-Lindau (VHL) and cereblon (CRBN) proteins are substrate recognition subunits of two ubiquitously expressed and biologically important Cullin RING E3 ubiquitin ligase complexes. VHL and CRBN are also the two most popular E3 ligases being recruited by bifunctional Proteolysis-targeting chimeras (PROTACs) to induce ubiquitination and subsequent proteasomal degradation of a target protein. Using homo-PROTACs, VHL and CRBN have been independently dimerized to induce their own degradation. Here we report the design, synthesis and cellular activity of VHL-CRBN hetero-dimerizing PROTACs featuring diverse conjugation patterns. We found that the most active compound 14a induced potent, rapid and profound preferential degradation of CRBN over VHL in cancer cell lines. At lower concentrations, weaker degradation of VHL was instead observed. This work demonstrates proof of concept of designing PROTACs to hijack different E3 ligases against each other, and highlights a powerful and generalizable proximity-induced strategy to achieve E3 ligase knockdown. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Miriam Girardini ◽  
Chiara Maniaci ◽  
Scott J. Hughes ◽  
Andrea Testa ◽  
Alessio Ciulli

<div> <div> <div> <p>The von Hippel-Lindau (VHL) and cereblon (CRBN) proteins are substrate recognition subunits of two ubiquitously expressed and biologically important Cullin RING E3 ubiquitin ligase complexes. VHL and CRBN are also the two most popular E3 ligases being recruited by bifunctional Proteolysis-targeting chimeras (PROTACs) to induce ubiquitination and subsequent proteasomal degradation of a target protein. Using homo-PROTACs, VHL and CRBN have been independently dimerized to induce their own degradation. Here we report the design, synthesis and cellular activity of VHL-CRBN hetero-dimerizing PROTACs featuring diverse conjugation patterns. We found that the most active compound 14a induced potent, rapid and profound preferential degradation of CRBN over VHL in cancer cell lines. At lower concentrations, weaker degradation of VHL was instead observed. This work demonstrates proof of concept of designing PROTACs to hijack different E3 ligases against each other, and highlights a powerful and generalizable proximity-induced strategy to achieve E3 ligase knockdown. </p> </div> </div> </div>


Science ◽  
2019 ◽  
Vol 365 (6448) ◽  
pp. eaaw4912 ◽  
Author(s):  
Richard T. Timms ◽  
Zhiqian Zhang ◽  
David Y. Rhee ◽  
J. Wade Harper ◽  
Itay Koren ◽  
...  

The N-terminal residue influences protein stability through N-degron pathways. We used stability profiling of the human N-terminome to uncover multiple additional features of N-degron pathways. In addition to uncovering extended specificities of UBR E3 ligases, we characterized two related Cullin-RING E3 ligase complexes, Cul2ZYG11B and Cul2ZER1, that act redundantly to target N-terminal glycine. N-terminal glycine degrons are depleted at native N-termini but strongly enriched at caspase cleavage sites, suggesting roles for the substrate adaptors ZYG11B and ZER1 in protein degradation during apoptosis. Furthermore, ZYG11B and ZER1 were found to participate in the quality control of N-myristoylated proteins, in which N-terminal glycine degrons are conditionally exposed after a failure of N-myristoylation. Thus, an additional N-degron pathway specific for glycine regulates the stability of metazoan proteomes.


Open Biology ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 200041 ◽  
Author(s):  
Zhuoyao Chen ◽  
Gregory A. Wasney ◽  
Sarah Picaud ◽  
Panagis Filippakopoulos ◽  
Masoud Vedadi ◽  
...  

Wnt signalling is dependent on dishevelled proteins (DVL1-3), which assemble an intracellular Wnt signalosome at the plasma membrane. The levels of DVL1-3 are regulated by multiple Cullin-RING E3 ligases that mediate their ubiquitination and degradation. The BTB-Kelch protein KLHL12 was the first E3 ubiquitin ligase to be identified for DVL1-3, but the molecular mechanisms determining its substrate interactions have remained unknown. Here, we mapped the interaction of DVL1-3 to a ‘PGXPP' motif that is conserved in other known partners and substrates of KLHL12, including PLEKHA4, PEF1, SEC31 and DRD4. To determine the binding mechanism, we solved a 2.4 Å crystal structure of the Kelch domain of KLHL12 in complex with a DVL1 peptide that bound with low micromolar affinity. The DVL1 substrate adopted a U-shaped turn conformation that enabled hydrophobic interactions with all six blades of the Kelch domain β-propeller. In cells, the mutation or deletion of this motif reduced the binding and ubiquitination of DVL1 and increased its stability confirming this sequence as a degron motif for KLHL12 recruitment. These results define the molecular mechanisms determining DVL regulation by KLHL12 and establish the KLHL12 Kelch domain as a new protein interaction module for a novel proline-rich motif.


2013 ◽  
Vol 449 (3) ◽  
pp. 707-717 ◽  
Author(s):  
Vivien Landré ◽  
Emmanuelle Pion ◽  
Vikram Narayan ◽  
Dimitris P. Xirodimas ◽  
Kathryn L. Ball

Understanding the determinants for site-specific ubiquitination by E3 ligase components of the ubiquitin machinery is proving to be a challenge. In the present study we investigate the role of an E3 ligase docking site (Mf2 domain) in an intrinsically disordered domain of IRF-1 [IFN (interferon) regulatory factor-1], a short-lived IFNγ-regulated transcription factor, in ubiquitination of the protein. Ubiquitin modification of full-length IRF-1 by E3 ligases such as CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and MDM2 (murine double minute 2), which dock to the Mf2 domain, was specific for lysine residues found predominantly in loop structures that extend from the DNA-binding domain, whereas no modification was detected in the more conformationally flexible C-terminal half of the protein. The E3 docking site was not available when IRF-1 was in its DNA-bound conformation and cognate DNA-binding sequences strongly suppressed ubiquitination, highlighting a strict relationship between ligase binding and site-specific modification at residues in the DNA-binding domain. Hyperubiquitination of a non-DNA-binding mutant supports a mechanism where an active DNA-bound pool of IRF-1 is protected from polyubiquitination and degradation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuang Liu ◽  
Meixuezi Tong ◽  
Lifang Zhao ◽  
Xin Li ◽  
Ljerka Kunst

The outer epidermal cell walls of plant shoots are covered with a cuticle, a continuous lipid structure that provides protection from desiccation, UV light, pathogens, and insects. The cuticle is mostly composed of cutin and cuticular wax. Cuticular wax synthesis is synchronized with surface area expansion during plant development and is associated with plant responses to biotic and abiotic stresses. Cuticular wax deposition is tightly regulated by well-established transcriptional and post-transcriptional regulatory mechanisms, as well as post-translationally via the ubiquitin-26S proteasome system (UPS). The UPS is highly conserved in eukaryotes and involves the covalent attachment of polyubiquitin chains to the target protein by an E3 ligase, followed by the degradation of the modified protein by the 26S proteasome. A large number of E3 ligases are encoded in the Arabidopsis genome, but only a few have been implicated in the regulation of cuticular wax deposition. In this study, we have conducted an E3 ligase reverse genetic screen and identified a novel RING-type E3 ubiquitin ligase, AtARRE, which negatively regulates wax biosynthesis in Arabidopsis. Arabidopsis plants overexpressing AtARRE exhibit glossy stems and siliques, reduced fertility and fusion between aerial organs. Wax load and wax compositional analyses of AtARRE overexpressors showed that the alkane-forming branch of the wax biosynthetic pathway is affected. Co-expression of AtARRE and candidate target proteins involved in alkane formation in both Nicotiana benthamiana and stable Arabidopsis transgenic lines demonstrated that AtARRE controls the levels of wax biosynthetic enzymes ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3). CER1 has also been confirmed to be a ubiquitination substrate of the AtARRE E3 ligase by an in vivo ubiquitination assay using a reconstituted Escherichia coli system. The AtARRE gene is expressed throughout the plant, with the highest expression detected in fully expanded rosette leaves and oldest stem internodes. AtARRE gene expression can also be induced by exposure to pathogens. These findings reveal that wax biosynthesis in mature plant tissues and in response to pathogen infection is controlled post-translationally.


2013 ◽  
Vol 450 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Yoshio Nakatani ◽  
Torsten Kleffmann ◽  
Katrin Linke ◽  
Stephen M. Condon ◽  
Mark G. Hinds ◽  
...  

RING domains of E3 ligases promote transfer of Ub (ubiquitin) from the E2~Ub conjugate to target proteins. In many cases interaction of the E2~Ub conjugate with the RING domain requires its prior dimerization. Using cross-linking experiments we show that E2 conjugated ubiquitin contacts the RING homodimer interface of the IAP (inhibitor of apoptosis) proteins, XIAP (X-linked IAP) and cIAP (cellular IAP) 2. Structural and biochemical analysis of the XIAP RING dimer shows that an aromatic residue at the dimer interface is required for E2~Ub binding and Ub transfer. Mutation of the aromatic residue abolishes Ub transfer, but not interaction with Ub. This indicates that nuleophilic attack on the thioester bond depends on precise contacts between Ub and the RING domain. RING dimerization is a critical activating step for the cIAP proteins; however, our analysis shows that the RING domain of XIAP forms a stable dimer and its E3 ligase activity does not require an activation step.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Martine A. Collart

The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins.


Sign in / Sign up

Export Citation Format

Share Document