scholarly journals Osmotic stress-induced, rapid clustering of IGF2BP proteins nucleates stress granule assembly

2019 ◽  
Author(s):  
Wei-jie Zeng ◽  
Chuxin Lu ◽  
Yuanyuan Shi ◽  
Xinxin Chen ◽  
Jie Yao

AbstractStress granules (SGs) are formed in the cytoplasm by liquid-liquid phase separation (LLPS) of translationally-stalled mRNA and RNA-binding proteins during stress response. Understanding the mechanisms governing SG assembly requires imaging SG formation in real time. Here we used live cell imaging and super-resolution imaging to visualize SG assembly in human cells. We found that IGF2BP proteins formed microscopically visible clusters almost instantaneously upon osmotic stress, prior to the recruitment of G3BP1 and TIA1. The rapid clustering of IGF2BP1 was ATP-independent and was mediated by its KH3/4 di-domains and an intrinsically disordered region (IDR), whereas ATP depletion inhibited the recruitment of G3BP1 and TIA1. Moreover, we detected cytoplasmic clusters of IGF2BP1 below the optical resolution in normal cells and found IGF2BP1 forming a dense granule associated with multiple clusters of poly(A) mRNA in mature SGs. Thus, ATP-independent, rapid clustering of IGF2BP nucleates SG assembly during osmotic stress.

2019 ◽  
Author(s):  
Ye Fu ◽  
Xiaowei Zhuang

AbstractDiverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of m6A-modified mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are crucial for SG formation. Super-resolution imaging further reveals that YTHDF proteins are in a super-saturated state, forming clusters that reside in the periphery of and at the junctions between SG core clusters, and promote SG phase separation by reducing the activation energy barrier and critical size for condensate formation. Our results reveal a new function and mechanistic insights of the m6A-binding YTHDF proteins in regulating phase separation.


2021 ◽  
Author(s):  
Laura Arribas-Hernández ◽  
Sarah Rennie ◽  
Tino Köster ◽  
Michael Schon ◽  
Carlotta Porcelli ◽  
...  

AbstractGene regulation dependent on N6-methyladenosine (m6A) in mRNA involves RNA-binding proteins that recognize m6A through a YTH domain. The Arabidopsis YTH-domain protein ECT2 is thought to influence mRNA 3’-end formation via binding to URU(m6A)Y sites, an unexpected conclusion given that ECT2 functions require its m6A binding activity, and that RR(m6A)CH is the m6A consensus site in all eukaryotes. Here, we apply the orthogonal techniques individual nucleotide-resolution UV-crosslinking and immunoprecipitation (iCLIP) and HyperTRIBE to define high-quality target sets of the YTH-domain proteins ECT2 and ECT3. The results show that in vivo, ECT2 does in fact bind to RR(m6A)CH. URUAY and other pyrimidine-rich motifs are enriched around, but not at m6A-sites, reflecting a preference for N6-adenosine methylation of RRACH islands in pyrimidine-rich regions. Such regions may also be implicated in ECT2-binding. In particular, a series of properties unique to the URUAY motif suggest that URUAY-type sequences act as sites of competition between unknown RNA-binding proteins and the intrinsically disordered region of ECT2. We also show that the abundance of many ECT2/3 mRNA targets is decreased in meristematic cells devoid of ECT2/3/4-activity. In contrast, loss of ECT2/3/4 activity has no effect on polyadenylation site usage in ECT2/3 targets, consistent with the exclusive cytoplasmic localization of ECT2 observed by super-resolution confocal microscopy. Our study reconciles conflicting results between genetic observations on N6-adenosine methylation and ECT2/3/4 function on the one side, and ECT2 target identification on the other, and point to regulation of cytoplasmic mRNA function, including abundance, as a mechanism of plant YTHDF action.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ahmed Salem ◽  
Carter J. Wilson ◽  
Benjamin S. Rutledge ◽  
Allison Dilliott ◽  
Sali Farhan ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nadia Formicola ◽  
Marjorie Heim ◽  
Jérémy Dufourt ◽  
Anne-Sophie Lancelot ◽  
Akira Nakamura ◽  
...  

Ribonucleoprotein (RNP) granules are dynamic condensates enriched in regulatory RNA binding proteins (RBPs) and RNAs under tight spatiotemporal control. Extensive recent work has investigated the molecular principles underlying RNP granule assembly, unraveling that they form through the self-association of RNP components into dynamic networks of interactions. How endogenous RNP granules respond to external stimuli to regulate RNA fate is still largely unknown. Here, we demonstrate through high-resolution imaging of intactDrosophilabrains that Tyramine induces a reversible remodeling of somatic RNP granules characterized by the decondensation of granule-enriched RBPs (e.g. Imp/ZBP1/IGF2BP) and helicases (e.g. Me31B/DDX-6/Rck). Furthermore, our functional analysis reveals that Tyramine signals both through its receptor TyrR and through the calcium-activated kinase CamkII to trigger RNP component decondensation. Finally, we uncover that RNP granule remodeling is accompanied by the rapid and specific translational activation of associated mRNAs. Thus, this work sheds new light on the mechanisms controlling cue-induced rearrangement of physiological RNP condensates.


2020 ◽  
Author(s):  
Amanjot Singh ◽  
Joern Huelsmeier ◽  
Arvind Reddy Kandi ◽  
Sai Shruti Pothapragada ◽  
Jens Hillebrand ◽  
...  

ABSTRACTAtaxin-2 is a conserved translational control protein associated with spinocerebellar ataxia type II (SCA2) and amyotrophic lateral sclerosis (ALS) as well as an important target for ALS therapeutics under development. Despite its clinical and biological significance, Ataxin-2’s activities, mechanisms and functions are not well understood. While Drosophila Ataxin-2 (Atx2) mediates mRNP condensation via a C-terminal intrinsically disordered domain (cIDR), how Ataxin-2 IDRs work with structured (Lsm, Lsm-AD and PAM2) domains to enable positive and negative regulation of target mRNAs remains unclear. Using TRIBE (Targets of RNA-Binding Proteins Identified by Editing) technology, we identified and analysed Atx-2 target mRNAs in the Drosophila brain. We show that Atx2 preferentially interacts with AU-rich elements (AREs) in 3’UTRs and plays a broad role in stabilization of identified target mRNAs. Strikingly, Atx2 interaction with its targets is dependent on the cIDR domain required for neuronal-granule formation. In contrast, Atx2 lacking its Lsm domain not only interacts more efficiently with the target mRNA identified, but also forms larger RNP granules. Providing an extensive dataset of Atx2-interacting brain mRNAs, our results demonstrate that Atx2: (a) interacts with target mRNAs within RNP granules; (b) modulates the turnover of these target mRNAs; (c) has an additional essential role outside of mRNP granules; and (d) contains distinct protein domains that drive or oppose RNP-granule assembly. These findings increase understanding of neuronal translational control mechanisms and inform Ataxin-2-based interventions in development for SCA2 and ALS.


2020 ◽  
Vol 21 (16) ◽  
pp. 5930
Author(s):  
Wan-Chin Chiang ◽  
Ming-Hsuan Lee ◽  
Tsai-Chen Chen ◽  
Jie-rong Huang

Most biological functions involve protein–protein interactions. Our understanding of these interactions is based mainly on those of structured proteins, because encounters between intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are much less studied, regardless of the fact that more than half eukaryotic proteins contain IDRs. RNA-binding proteins (RBPs) are a large family whose members almost all have IDRs in addition to RNA binding domains. These IDRs, having low sequence similarity, interact, but structural details on these interactions are still lacking. Here, using the IDRs of two RBPs (hnRNA-A2 and TDP-43) as a model, we demonstrate that the rate at which TDP-43′s IDR undergoes the neurodegenerative disease related α-helix-to-β-sheet transition increases in relation to the amount of hnRNP-A2′s IDR that is present. There are more than 1500 RBPs in human cells and most of them have IDRs. RBPs often join the same complexes to regulate genes. In addition to the structured RNA-recognition motifs, our study demonstrates a general mechanism through which RBPs may regulate each other’s functions through their IDRs.


2020 ◽  
Vol 49 (1) ◽  
pp. 247-265 ◽  
Author(s):  
Kevin Rhine ◽  
Velinda Vidaurre ◽  
Sua Myong

Liquid–liquid phase separation is emerging as the universal mechanism by which membraneless cellular granules form. Despite many previous studies on condensation of intrinsically disordered proteins and low complexity domains, we lack understanding about the role of RNA, which is the essential component of all ribonucleoprotein (RNP) granules. RNA, as an anionic polymer, is inherently an excellent platform for achieving multivalency and can accommodate many RNA binding proteins. Recent findings have highlighted the diverse function of RNA in tuning phase-separation propensity up or down, altering viscoelastic properties and thereby driving immiscibility between different condensates. In addition to contributing to the biophysical properties of droplets, RNA is a functionally critical constituent that defines the identity of cellular condensates and controls the temporal and spatial distribution of specific RNP granules. In this review, we summarize what we have learned so far about such roles of RNA in the context of in vitro and in vivo studies.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Joshua R Wheeler ◽  
Tyler Matheny ◽  
Saumya Jain ◽  
Robert Abrisch ◽  
Roy Parker

Stress granules are non-membrane bound RNA-protein (RNP) assemblies that form when translation initiation is limited and contain a biphasic structure with stable core structures surrounded by a less concentrated shell. The order of assembly and disassembly of these two structures remains unknown. Time course analysis of granule assembly suggests that core formation is an early event in granule assembly. Stress granule disassembly is also a stepwise process with shell dissipation followed by core clearance. Perturbations that alter liquid-liquid phase separations (LLPS) driven by intrinsically disordered protein regions (IDR) of RNA binding proteins in vitro have the opposite effect on stress granule assembly in vivo. Taken together, these observations argue that stress granules assemble through a multistep process initiated by stable assembly of untranslated mRNPs into core structures, which could provide sufficient high local concentrations to allow for a localized LLPS driven by IDRs on RNA binding proteins.


2021 ◽  
Author(s):  
Aidan M Fenix ◽  
Yuichiro Miyaoka ◽  
Alessandro Bertero ◽  
Steven Blue ◽  
Matthew J Spindler ◽  
...  

RNA binding motif protein 20 (RBM20) is a key regulator of alternative splicing in the heart, and its mutation leads to malignant dilated cardiomyopathy (DCM). To understand the mechanism of RBM20-associated DCM, we engineered isogenic human induced pluripotent stem cells (iPSCs) with heterozygous or homozygous DCM-associated missense mutations in RBM20 (R636S) as well as RBM20 knockout (KO) iPSCs. iPSC-derived engineered heart tissues made from these cell lines recapitulated contractile dysfunction of RBM20-associated DCM and revealed greater dysfunction with missense mutations than KO. Analysis of RBM20 RNA binding by eCLIP revealed a gain-of-function preference of mutant RBM20 for 3′ UTR sequences that are shared with amyotrophic lateral sclerosis (ALS) and processing-body associated RNA binding proteins (FUS, DDX6). Deep RNA sequencing revealed that the RBM20 R636S mutant has unique gene, splicing, polyadenylation and circular RNA defects that differ from RBM20 KO, impacting distinct cardiac signaling pathways. Splicing defects specific to KO or R636S mutations were supported by data from R636S gene-edited pig hearts and eCLIP. Super-resolution microscopy verified that mutant RBM20 maintains limited nuclear localization potential; rather, the mutant protein associates with cytoplasmic processing bodies (DDX6) under basal conditions, and with stress granules (G3BP1) following acute stress. Taken together, our results highlight a novel pathogenic mechanism in cardiac disease through splicing-dependent and -independent pathways that are likely to mediate differential contractile phenotypes and stress-associated heart pathology.


Sign in / Sign up

Export Citation Format

Share Document