scholarly journals Response nonlinearities in networks of spiking neurons

2019 ◽  
Author(s):  
Alessandro Sanzeni ◽  
Mark H. Histed ◽  
Nicolas Brunel

ABSTRACTCombining information from multiple sources is a fundamental operation performed by networks of neurons in the brain, whose general principles are still largely unknown. Experimental evidence suggests that combination of inputs in cortex relies on nonlinear summation. Such nonlinearities are thought to be fundamental to perform complex computations. However, these non-linearities contradict the balanced-state model, one of the most popular models of cortical dynamics, which predicts networks have a linear response. This linearity is obtained in the limit of very large recurrent coupling strength. We investigate the stationary response of networks of spiking neurons as a function of coupling strength. We show that, while a linear transfer function emerges at strong coupling, nonlinearities are prominent at finite coupling, both at response onset and close to saturation. We derive a general framework to classify nonlinear responses in these networks and discuss which of them can be captured by rate models. This framework could help to understand the observed diversity of non-linearities observed in cortical networks.AUTHOR SUMMARYModels of cortical networks are often studied in the strong coupling limit, where the so-called balanced state emerges. In this strong coupling limit, networks exhibit without fine tuning, a number of ubiquitous properties of cortex, such as the irregular nature of neuronal firing. However, it fails to account for nonlinear summation of inputs, since the strong coupling limit leads to a linear network transfer function. We show that, in networks of spiking neurons, nonlinearities at response-onset and saturation emerge at finite coupling. Critically, for realistic parameter values, both types of nonlinearities are observed at experimentally observed rates. Thus, we propose that these models could explain experimentally observed nonlinearities.


2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>



1987 ◽  
Vol 02 (08) ◽  
pp. 601-608 ◽  
Author(s):  
T. FUKAI ◽  
M. V. ATRE

The Grassmannian σ model with a topological term is studied on a lattice. The θ dependence of the partition function and the Wilson loop are evaluated in the strong coupling limit. The latter is shown to be independent of the area at θ = π, as in the CPN−1 model.



2020 ◽  
Vol 75 (8) ◽  
pp. 803-807
Author(s):  
Svend-Age Biehs ◽  
Achim Kittel ◽  
Philippe Ben-Abdallah

AbstractWe theoretically analyze heat exchange between two quantum systems in interaction with external thermostats. We show that in the strong coupling limit the widely used concept of mode temperatures loses its thermodynamic foundation and therefore cannot be employed to make a valid statement on cooling and heating in such systems; instead, the incorrectly applied concept may result in a severe misinterpretation of the underlying physics. We illustrate these general conclusions by discussing recent experimental results reported on the nanoscale heat transfer through quantum fluctuations between two nanomechanical membranes separated by a vacuum gap.



2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Gülis Zengin ◽  
Göran Johansson ◽  
Peter Johansson ◽  
Tomasz J. Antosiewicz ◽  
Mikael Käll ◽  
...  


2008 ◽  
Vol 20 (4) ◽  
pp. 974-993 ◽  
Author(s):  
Arunava Banerjee ◽  
Peggy Seriès ◽  
Alexandre Pouget

Several recent models have proposed the use of precise timing of spikes for cortical computation. Such models rely on growing experimental evidence that neurons in the thalamus as well as many primary sensory cortical areas respond to stimuli with remarkable temporal precision. Models of computation based on spike timing, where the output of the network is a function not only of the input but also of an independently initializable internal state of the network, must, however, satisfy a critical constraint: the dynamics of the network should not be sensitive to initial conditions. We have previously developed an abstract dynamical system for networks of spiking neurons that has allowed us to identify the criterion for the stationary dynamics of a network to be sensitive to initial conditions. Guided by this criterion, we analyzed the dynamics of several recurrent cortical architectures, including one from the orientation selectivity literature. Based on the results, we conclude that under conditions of sustained, Poisson-like, weakly correlated, low to moderate levels of internal activity as found in the cortex, it is unlikely that recurrent cortical networks can robustly generate precise spike trajectories, that is, spatiotemporal patterns of spikes precise to the millisecond timescale.



2021 ◽  
Vol 11 (10) ◽  
pp. 4529
Author(s):  
Haroon Asghar ◽  
John G. McInerney

We experimentally demonstrated a power split ratio and optical delay phase dependent dual-loop optical feedback to investigate the suppression of frequency-fluctuations induced due to delayed optical feedback. The device under investigation is self-mode-locked (SML) two-section quantum-dash (QDash) laser operating at ∼21 GHz and emitting at ∼1.55 m. The effect of two selective combinations of power split ratios (Loop-I: −23.29 dB and Loop-II: −28.06 dB, and Loop-I and Loop-II: −22 dB) and two optical delay phase settings ((i) stronger cavity set to integer resonance and fine-tuning the weaker cavity, (ii) weaker cavity set to integer resonance and fine-tuning of stronger cavity) on the suppression of cavity side-bands have been studied. Measured experimental results demonstrate that delayed optical feedback induced frequency-fluctuations can be effectively suppressed on integer resonance as well as on full delay range tuning (0–84 ps) by adjusting coupling strength −22 dB through Loop-I and Loop-II, respectively. Our findings suggest that power split ratio and delays phase-dependent dual-loop optical feedback can be used to maximize the performance of semiconductor mode-locked lasers.



Author(s):  
S. G. Wyse ◽  
G. T. Parks ◽  
R. S. Cant

Gas turbine combustor design entails multiple, and often contradictory, requirements for the designer to consider. Multiobjective optimisation on a low-fidelity linear-network-based code is suggested as a way of investigating the design space. The ability of the Tabu Search optimiser to minimise NOx and CO, as well as several acoustic objective functions, is investigated, and the resulting “good” design vectors presented. An analysis of the importance of the flame transfer function in the model is also given. The mass flow and the combustion chamber width and area are shown to be very important. The length of the plenum and the widths of the plenum exit and combustor exit also influence the design space.



Sign in / Sign up

Export Citation Format

Share Document