scholarly journals Primary mammary organoid model of lactation and involution

2019 ◽  
Author(s):  
Jakub Sumbal ◽  
Aurelie Chiche ◽  
Elsa Charifou ◽  
Zuzana Koledova ◽  
Han Li

AbstractMammary gland development occurs mainly after birth and is composed of three successive stages: puberty, pregnancy and lactation, and involution. These developmental stages are associated with major tissue remodeling, including extensive changes in mammary epithelium as well as surrounding stroma. Three-dimensional (3D) mammary organoid culture has become an important tool in mammary gland biology and enabled invaluable discoveries on pubertal mammary branching morphogenesis and breast cancer. However, a suitable 3D organoid model recapitulating key aspects of lactation and involution has been missing. Here, we describe a robust and straightforward mouse mammary organoid system modeling lactation and involution-like process, which can be applied to study mechanisms of physiological mammary gland lactation and involution as well as pregnancy-associated breast cancer.

2019 ◽  
Author(s):  
Gillian J Wilson ◽  
Ayumi Fukuoka ◽  
Samantha R Love ◽  
Jiwon Kim ◽  
Marieke Pingen ◽  
...  

AbstractMacrophages are key regulators of developmental processes, including those involved in mammary gland development. We previously demonstrated that the atypical chemokine receptor, ACKR2, contributes to control of ductal epithelial branching in the developing mammary gland by regulating macrophage dynamics. ACKR2 is a chemokine-scavenging receptor, which mediates its effects through collaboration with inflammatory chemokine receptors (iCCRs). Here we reveal that ACKR2, and the iCCR CCR1, reciprocally regulate branching morphogenesis in the mammary gland, whereby stromal ACKR2 modulates levels of the shared ligand CCL7 to control the movement of a key population of CCR1-expressing macrophages to the ductal epithelium. In addition estrogen, which is essential for ductal elongation during puberty, upregulates CCR1 expression on macrophages. The age at which girls develop breasts is decreasing, which raises the risk of diseases including breast cancer. This study presents a previously unknown mechanism controlling the rate of mammary gland development during puberty and highlights potential therapeutic targets.SummaryIn the mammary gland during puberty, availability of the chemokine CCL7 is controlled by a scavenging receptor ACKR2 and provides a key signal to macrophages which have the receptor CCR1. Together, this controls the timing of development.


2009 ◽  
Vol 20 (10) ◽  
pp. 2572-2581 ◽  
Author(s):  
David Vaught ◽  
Jin Chen ◽  
Dana M. Brantley-Sieders

Eph receptor tyrosine kinases, including EphA2, are expressed in the mammary gland. However, their role in mammary gland development remains poorly understood. Using EphA2-deficient animals, we demonstrate for the first time that EphA2 receptor function is required for mammary epithelial growth and branching morphogenesis. Loss of EphA2 decreased penetration of mammary epithelium into fat pad, reduced epithelial proliferation, and inhibited epithelial branching. These defects appear to be intrinsic to loss of EphA2 in epithelium, as transplantation of EphA2-deficient mammary tissue into wild-type recipient stroma recapitulated these defects. In addition, HGF-induced mammary epithelial branching morphogenesis was significantly reduced in EphA2-deficient cells relative to wild-type cells, which correlated with elevated basal RhoA activity. Moreover, inhibition of ROCK kinase activity in EphA2-deficient mammary epithelium rescued branching defects in primary three-dimensional cultures. These results suggest that EphA2 receptor acts as a positive regulator in mammary gland development, functioning downstream of HGF to regulate branching through inhibition of RhoA. Together, these data demonstrate a positive role for EphA2 during normal mammary epithelial proliferation and branching morphogenesis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Parisa Rabieifar ◽  
Ting Zhuang ◽  
Tânia D. F. Costa ◽  
Miao Zhao ◽  
Staffan Strömblad

Abstract p21-activated kinases (PAKs) are serine/threonine kinases functioning as downstream effectors of the small GTPases Rac1 and Cdc42. Members of the PAK family are overexpressed in human breast cancer, but their role in mammary gland development is not fully explored. Here we examined the functional role of PAK4 in mammary gland development by creating a mouse model of MMTV-Cre driven conditional PAK4 gene depletion in the mammary gland. The PAK4 conditional knock-out mice were born healthy, with no observed developmental deficits. Mammary gland whole-mounts revealed no defects in ductal formation or elongation of the mammary tree through the fat pad. PAK4 gene depletion also did not alter proliferation and invasion of the mammary epithelium in young virgin mice. Moreover, adult mice gave birth to healthy pups with normal body weight upon weaning. This implies that MMTV-Cre induced gene depletion of PAK4 in mice does not impair normal mammary gland development and thereby provides an in vivo model that can be explored for examination of the potential function of PAK4 in breast cancer.


2015 ◽  
Vol 35 (9) ◽  
pp. 1543-1556 ◽  
Author(s):  
Daisuke Hasegawa ◽  
Veronica Calvo ◽  
Alvaro Avivar-Valderas ◽  
Abigale Lade ◽  
Hsin-I Chou ◽  
...  

Xbp1, a key mediator of the unfolded protein response (UPR), is activated by IRE1α-mediated splicing, which results in a frameshift to encode a protein with transcriptional activity. However, the direct function of Xbp1 in epithelial cells during mammary gland development is unknown. Here we report that the loss of Xbp1 in the mammary epithelium through targeted deletion leads to poor branching morphogenesis, impaired terminal end bud formation, and spontaneous stromal fibrosis during the adult virgin period. Additionally, epithelial Xbp1 deletion induces endoplasmic reticulum (ER) stress in the epithelium and dramatically inhibits epithelial proliferation and differentiation during lactation. The synthesis of milk and its major components, α/β-casein and whey acidic protein (WAP), is significantly reduced due to decreased prolactin receptor (Prlr) and ErbB4 expression in Xbp1-deficient mammary epithelium. Reduction of Prlr and ErbB4 expression and their diminished availability at the cell surface lead to reduced phosphorylated Stat5, an essential regulator of cell proliferation and differentiation during lactation. As a result, lactating mammary glands in these mice produce less milk protein, leading to poor pup growth and postnatal death. These findings suggest that the loss of Xbp1 induces a terminal UPR which blocks proliferation and differentiation during mammary gland development.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1697
Author(s):  
Angelica Avagliano ◽  
Giuseppe Fiume ◽  
Maria Rosaria Ruocco ◽  
Nunzia Martucci ◽  
Eleonora Vecchio ◽  
...  

The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.


2019 ◽  
Author(s):  
Parisa Rabieifar ◽  
Ting Zhuang ◽  
Tânia D. F. Costa ◽  
Miao Zhao ◽  
Staffan Strömblad

Abstractp21-activated protein kinases (PAKs) are serine/threonine kinases functioning as downstream effectors of the small GTPases Rac1 and Cdc42. Members of the PAK family are overexpressed in human breast cancer, but their role in mammary gland development is not fully explored. Here we examined the functional role of PAK4 in mammary gland development by creating a mouse model of MMTV-Cre driven conditional PAK4 gene depletion in the mammary gland. The PAK4 conditional knock-out mice were born healthy with no observed developmental deficits. Mammary gland whole-mounts revealed no defects in ductal formation or elongation of the mammary tree through the fat pad. PAK4 gene depletion also did not alter proliferation and invasion of the mammary epithelium in young virgin mice. Moreover, adult mice gave birth to healthy pups with normal body weight upon weaning. This implies that MMTV-Cre induced gene depletion of PAK4 in mice does not impair normal mammary gland development and thereby provides an in vivo model for examination of the potential function of PAK4 in breast cancer.


Author(s):  
Georgia Colleluori ◽  
Jessica Perugini ◽  
Giorgio Barbatelli ◽  
Saverio Cinti

AbstractThe mammary gland (MG) is an exocrine gland present in female mammals responsible for the production and secretion of milk during the process of lactation. It is mainly composed by epithelial cells and adipocytes. Among the features that make the MG unique there are 1) its highly plastic properties displayed during pregnancy, lactation and involution (all steps belonging to the lactation cycle) and 2) its requirement to grow in close association with adipocytes which are absolutely necessary to ensure MG’s proper development at puberty and remodeling during the lactation cycle. Although MG adipocytes play such a critical role for the gland development, most of the studies have focused on its epithelial component only, leaving the role of the neighboring adipocytes largely unexplored. In this review we aim to describe evidences regarding MG’s adipocytes role and properties in physiologic conditions (gland development and lactation cycle), obesity and breast cancer, emphasizing the existing gaps in the literature which deserve further investigation.


Sign in / Sign up

Export Citation Format

Share Document