scholarly journals Syncytium cell growth increases IK1 contribution in human iPS-cardiomyocytes

2019 ◽  
Author(s):  
Weizhen Li ◽  
Emilia Entcheva

SummaryHuman induced pluripotent stem-cell-derived cardiomyocytes (hiPS-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared to adult cardiomyocytes, implicating low or lacking inward-rectifier potassium current (Ik1). Here, protein quantification confirms Ik1 expression in hiPS-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPS-CM cell culture density influences Ik1 expression and the associated electrophysiology phenotype. All-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity in denser cultures. Blocking Ik1 with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPS-CM for more physiologically-relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting.

2017 ◽  
Vol 312 (6) ◽  
pp. H1144-H1153 ◽  
Author(s):  
Sam Chai ◽  
Xiaoping Wan ◽  
Drew M. Nassal ◽  
Haiyan Liu ◽  
Christine S. Moravec ◽  
...  

Two-pore K+ (K2p) channels have been described in modulating background conductance as leak channels in different physiological systems. In the heart, the expression of K2p channels is heterogeneous with equivocation regarding their functional role. Our objective was to determine the K2p expression profile and their physiological and pathophysiological contribution to cardiac electrophysiology. Induced pluripotent stem cells (iPSCs) generated from humans were differentiated into cardiomyocytes (iPSC-CMs). mRNA was isolated from these cells, commercial iPSC-CM (iCells), control human heart ventricular tissue (cHVT), and ischemic (iHF) and nonischemic heart failure tissues (niHF). We detected 10 K2p channels in the heart. Comparing quantitative PCR expression of K2p channels between human heart tissue and iPSC-CMs revealed K2p1.1, K2p2.1, K2p5.1, and K2p17.1 to be higher expressed in cHVT, whereas K2p3.1 and K2p13.1 were higher in iPSC-CMs. Notably, K2p17.1 was significantly lower in niHF tissues compared with cHVT. Action potential recordings in iCells after K2p small interfering RNA knockdown revealed prolongations in action potential depolarization at 90% repolarization for K2p2.1, K2p3.1, K2p6.1, and K2p17.1. Here, we report the expression level of 10 human K2p channels in iPSC-CMs and how they compared with cHVT. Importantly, our functional electrophysiological data in human iPSC-CMs revealed a prominent role in cardiac ventricular repolarization for four of these channels. Finally, we also identified K2p17.1 as significantly reduced in niHF tissues and K2p4.1 as reduced in niHF compared with iHF. Thus, we advance the notion that K2p channels are emerging as novel players in cardiac ventricular electrophysiology that could also be remodeled in cardiac pathology and therefore contribute to arrhythmias. NEW & NOTEWORTHY Two-pore K+ (K2p) channels are traditionally regarded as merely background leak channels in myriad physiological systems. Here, we describe the expression profile of K2p channels in human-induced pluripotent stem cell-derived cardiomyocytes and outline a salient role in cardiac repolarization and pathology for multiple K2p channels.


2018 ◽  
Author(s):  
Steven Boggess ◽  
Shivaani Gandhi ◽  
Brian Siemons ◽  
Nathaniel Huebsch ◽  
Kevin Healy ◽  
...  

<div> <p>The ability to non-invasively monitor membrane potential dynamics in excitable cells like neurons and cardiomyocytes promises to revolutionize our understanding of the physiology and pathology of the brain and heart. Here, we report the design, synthesis, and application of a new class of fluorescent voltage indicator that makes use of a fluorene-based molecular wire as a voltage sensing domain to provide fast and sensitive measurements of membrane potential in both mammalian neurons and human-derived cardiomyocytes. We show that the best of the new probes, fluorene VoltageFluor 2 (fVF 2) readily reports on action potentials in mammalian neurons, detects perturbations to cardiac action potential waveform in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, shows a substantial decrease in phototoxicity compared to existing molecular wire-based indicators, and can monitor cardiac action potentials for extended periods of time. Together, our results demonstrate the generalizability of a molecular wire approach to voltage sensing and highlights the utility of fVF 2 for interrogating membrane potential dynamics.</p> </div>


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Francesca Stillitano ◽  
Ioannis Karakikes ◽  
Chi-wai Kong ◽  
Brett Martinelli ◽  
Ronald Li ◽  
...  

Long QT syndrome (LQTS) is characterized by prolonged cardiac repolarization time and increased risk of ventricular arrhythmia. LQTS can be either inherited or induced notably after drugs intake. Mutations in genes encoding cardiac ion channels have been reported to underlie inherited LQTS. In contrast, drug-induced LQTS (diLQTS) most frequently arises from altered function of the hERG channel; the risk of developing diLQTS varies largely between subjects and most people who have life-threatening diLQTS have no known genetic risk factors. We investigated whether the susceptibility to develop diLQTS observed in vivo can be recapitulated in vitro using patient-specific induced pluripotent stem cell (iPSC) technology. We collected skin fibroblasts from ten subjects who developed significant diLQTS after administration of Sotalol and/or Erythromycin. Ten other individuals who displayed no changes in QT interval after administration of the same drugs, were selected. iPSC were generated by retroviral delivery of Oct4, Sox2, Nanog and Klf4 in 17 of the 20 individuals. We report preliminary results obtained from iPSC-derived cardiomyocytes (iPSC-CMs) of two subjects. All experiments were performed in a blinded fashion without knowledge of the associated clinical phenotype. Cardiac differentiation of iPSC resulted in the generation of spontaneously beating embryoid bodies. iPSC-CMs showed positive staining for TNNT2, ACTN2 and Cx43. Gene expression analysis confirmed the expression of NKX2.5, MLC2v, MYH6 and MYH7, and of the relevant KCNH2 gene. The two lines had similar basal electrophysiological properties as assessed by measurements of action potential (AP) by patch-clamp technique and extracellular field potentials (FP) using micro-electrode array (MEA). E4031, a classical HERG blocker, significantly prolonged the FP duration (FPD) in a dose-dependent manner in both lines (EC50: 30.19 and 51.57 respectively). When both Sotalol and Erythromicin were used, FPD was prolonged in one of the two samples in a dose-dependent manner (EC50Sotalol: 100; EC50Erythr: 9.64) while drug response was blunted in the other cell line. This study suggests that patient-specific iPSC can be used to model the functional abnormalities observed in acquired diLQTS.


1991 ◽  
Vol 71 (4) ◽  
pp. 1409-1414 ◽  
Author(s):  
A. S. Losavio ◽  
B. A. Kotsias

We studied the effect of aminophylline (0.1–1 mM) on the contraction threshold (CT) of rat diaphragm fibers (25 degrees C). The CT was measured by direct visualization (x200) of the fiber under current-clamp conditions. The main findings are the following: 1) Aminophylline lowers the CT, in a dose-dependent manner, toward more negative values of the resting membrane potential (Vm). 2) Dibutyryl adenosine 3′,5′-cyclic monophosphate (2 mM) shifts the CT, although this change is smaller than in the presence of xanthine. 3) Tetracaine (1 mM), a drug that diminishes Ca release from the sarcoplasmic reticulum, reduces the shift induced by 1 mM aminophylline; this is partially overcome by increasing aminophylline concentration to 5 mM. 4) Hyperpolarization of the fibers shifts the CT to more negative Vm. We suggest that the displacement in the CT to more negative Vm plays an important role in the potentiating effect of aminophylline. This could be the result of an enhancement of Ca release from the sarcoplasmic reticulum.


2021 ◽  
Vol 153 (2) ◽  
Author(s):  
Shiva N. Kompella ◽  
Fabien Brette ◽  
Jules C. Hancox ◽  
Holly A. Shiels

Air pollution is an environmental hazard that is associated with cardiovascular dysfunction. Phenanthrene is a three-ringed polyaromatic hydrocarbon that is a significant component of air pollution and crude oil and has been shown to cause cardiac dysfunction in marine fishes. We investigated the cardiotoxic effects of phenanthrene in zebrafish (Danio rerio), an animal model relevant to human cardiac electrophysiology, using whole-cell patch-clamp of ventricular cardiomyocytes. First, we show that phenanthrene significantly shortened action potential duration without altering resting membrane potential or upstroke velocity (dV/dt). L-type Ca2+ current was significantly decreased by phenanthrene, consistent with the decrease in action potential duration. Phenanthrene blocked the hERG orthologue (zfERG) native current, IKr, and accelerated IKr deactivation kinetics in a dose-dependent manner. Furthermore, we show that phenanthrene significantly inhibits the protective IKr current envelope, elicited by a paired ventricular AP-like command waveform protocol. Phenanthrene had no effect on other IK. These findings demonstrate that exposure to phenanthrene shortens action potential duration, which may reduce refractoriness and increase susceptibility to certain arrhythmia triggers, such as premature ventricular contractions. These data also reveal a previously unrecognized mechanism of polyaromatic hydrocarbon cardiotoxicity on zfERG by accelerating deactivation and decreasing IKr protective current.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Tuerdi Subati ◽  
Zhenjiang Yang ◽  
Isis L Christopher ◽  
Joseph C Van Amburg ◽  
Matthew B Murphy ◽  
...  

Background: Hypertension is one of the most common risk factors for atrial fibrillation (AF), although the precise cellular and molecular mechanism(s) by which hypertension leads to AF are not well understood. Isolevuglandins (IsoLGs) are highly reactive dicarbonyl products of lipid peroxidation responsible for a major component of oxidative stress-related injury. In a mouse model of hypertension, we recently demonstrated that IsoLGs are elevated in hypertensive mouse atria and that an IsoLG scavenger reduced both IsoLG burden and AF susceptibility. Hypothesis: In this study, we hypothesized that IsoLGs can promote AF by inducing proarrhythmic metabolic and electrophysiologic (EP) changes in atrial cardiomyocytes. Methods and Results: Using standard patch clamp methods, we found significant changes in action potential properties of isolated mouse atrial cardiomyocytes exposed to IsoLGs (1μM, n=15 cells), including elevation of resting membrane potential, shortening of APD and reduction of V max . Acute IsoLG treatment led to a reduction of intracellular ATP production in atrial HL-1 cardiomyocytes, as measured by using a luminescence assay. Employing TMRM and Mitotracker Green staining for confocal and high-throughput screening (HTS) live-cell imaging assays, we also found that IsoLGs decreased mitochondrial membrane potential (compared to control, TMRM fluorescence decreased by 23%, 28%, 36% and 42%, respectively, when exposed to 0.01, 0.1, 0.5 and 1μM concentrations of IsoLG) accompanied by increased apoptosis (Cell Event Caspase-3/7 Green Detection Reagent) in a concentration-dependent manner, suggesting a prolonged mitochondrial transition pore opening. Moreover, cell metabolism assays performed using Agilent’s Seahorse XF96 extracellular flux analyzer revealed that IsoLGs exert a concentration dependent decrease in basal oxygen consumption rate and ATP production in HL-1 atrial cardiomyocytes. Conclusion: Together, these findings indicate that IsoLGs promote proarrhythmic EP and mitochondrial effects in atrial cells and thus may provide a novel therapeutic target for AF.


1995 ◽  
Vol 268 (1) ◽  
pp. L47-L55 ◽  
Author(s):  
A. P. Abela ◽  
E. E. Daniel

In canine bronchi bathed in 10(-6) M indomethacin (IDM), prostaglandin (PG) E2 inhibited electrical field stimulation (EFS)- and acetylcholine (ACh)-mediated contractions and excitatory junction potentials (EJP) in a concentration-dependent manner without altering the resting membrane potential. EFS-induced EJPs were abolished at 10(-7) M PGE2, which shifted responses to ACh 10-fold rightward. Thus PGE2 predominantly inhibited the release of ACh and secondarily decreased smooth muscle response to ACh. U-46619, an analogue of thromboxane A2 (TxA2), initiated tetrodotoxin- and atropine-insensitive contractions in a concentration-dependent manner. U-46619 (10(-9) M) did not alter significantly EFS- or ACh-stimulated contractions and potentiated EFS amplitude of EJPs without depolarizing muscle cells. Either prejunctional activation of ACh release by TxA2 or postjunctional potentiation of the response to ACh can explain these findings. U-46619 (<or = 10(-8) M) depolarized the membrane potential, initiating oscillations accompanied by a large contraction. Addition of 10(-8) M nitrendipine, but not tetraethylammonium (25 mM), blocked the oscillations selectively. Other prostanoids (PGD2, PGI2, and PGF2 alpha) had no significant effects on canine bronchi. In the absence of IDM, PGE2 accumulated, EFS contractions decreased with time, and EJPs disappeared. We conclude that in canine bronchi PGE2 predominantly inhibits ACh release and endogenous PGE2 acts similarly, whereas TxA2 excites, probably at postjunctional sites.


2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Marissa Reilly ◽  
Chantal D. Bruno ◽  
Tomas M. Prudencio ◽  
Nina Ciccarelli ◽  
Devon Guerrelli ◽  
...  

Background The red blood cell (RBC) storage lesion is a series of morphological, functional, and metabolic changes that RBCs undergo following collection, processing, and refrigerated storage for clinical use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. We measured the direct effect of storage age on cardiac electrophysiology and compared it with hyperkalemia, a prominent biomarker of storage lesion severity. Methods and Results Donor RBCs were processed using standard blood‐banking techniques. The supernatant was collected from RBC units, 7 to 50 days after donor collection, for evaluation using Langendorff‐heart preparations (rat) or human induced pluripotent stem cell–derived cardiomyocytes. Cardiac parameters remained stable following exposure to “fresh” supernatant from red blood cell units (day 7: 5.8±0.2 mM K + ), but older blood products (day 40: 9.3±0.3 mM K + ) caused bradycardia (baseline: 279±5 versus day 40: 216±18 beats per minute), delayed sinus node recovery (baseline: 243±8 versus day 40: 354±23 ms), and increased the effective refractory period of the atrioventricular node (baseline: 77±2 versus day 40: 93±7 ms) and ventricle (baseline: 50±3 versus day 40: 98±10 ms) in perfused hearts. Beating rate was also slowed in human induced pluripotent stem cell–derived cardiomyocytes after exposure to older supernatant from red blood cell units (−75±9%, day 40 versus control). Similar effects on automaticity and electrical conduction were observed with hyperkalemia (10–12 mM K + ). Conclusions This is the first study to demonstrate that “older” blood products directly impact cardiac electrophysiology, using experimental models. These effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including, but not limited to hyperkalemia. Patients receiving large volume and/or rapid transfusions may be sensitive to these effects.


Sign in / Sign up

Export Citation Format

Share Document