scholarly journals Lineage-Specific Gene Expansions in Bacterial and Archaeal Genomes

2001 ◽  
Vol 11 (4) ◽  
pp. 555-565 ◽  
Author(s):  
I. King Jordan ◽  
Kira S. Makarova ◽  
John L. Spouge ◽  
Yuri I. Wolf ◽  
Eugene V. Koonin

Gene duplication is an important mechanistic antecedent to the evolution of new genes and novel biochemical functions. In an attempt to assess the contribution of gene duplication to genome evolution in archaea and bacteria, clusters of related genes that appear to have expanded subsequent to the diversification of the major prokaryotic lineages (lineage-specific expansions) were analyzed. Analysis of 21 completely sequenced prokaryotic genomes shows that lineage-specific expansions comprise a substantial fraction (∼5%–33%) of their coding capacities. A positive correlation exists between the fraction of the genes taken up by lineage-specific expansions and the total number of genes in a genome. Consistent with the notion that lineage-specific expansions are made up of relatively recently duplicated genes, >90% of the detected clusters consists of only two to four genes. The more common smaller clusters tend to include genes with higher pairwise similarity (as reflected by average score density) than larger clusters. Regardless of size, cluster members tend to be located more closely on bacterial chromosomes than expected by chance, which could reflect a history of tandem gene duplication. In addition to the small clusters, almost all genomes also contain rare large clusters of size ≥20. Several examples of the potential adaptive significance of these large clusters are explored. The presence or absence of clusters and their related genes was used as the basis for the construction of a similarity graph for completely sequenced prokaryotic genomes. The topology of the resulting graph seems to reflect a combined effect of common ancestry, horizontal transfer, and lineage-specific gene loss.

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Juan Liu ◽  
Anupma Sharma ◽  
Marie Jamille Niewiara ◽  
Ratnesh Singh ◽  
Ray Ming ◽  
...  

2021 ◽  
Author(s):  
Yuan Huang ◽  
Jiahui Chen ◽  
Chuan Dong ◽  
Dylan Sosa ◽  
Shengqian Xia ◽  
...  

Abstract Gene duplication is increasingly recognized as an important mechanism for the origination of new genes, as revealed by comparative genomic analysis. However, how new duplicate genes contribute to phenotypic evolution remains largely unknown, especially in plants. Here, we identified the new gene EXOV, derived from a partial gene duplication of its parental gene EXOVL in Arabidopsis thaliana. EXOV is a species-specific gene that originated within the last 3.5 million years and shows strong signals of positive selection. Unexpectedly, RNA-seq analyses revealed that, despite its young age, EXOV has acquired many novel direct and indirect interactions in which the parental gene does not engage. This observation is consistent with the high, selection-driven substitution rate of its encoded protein, in contrast to the slowly evolving EXOVL, suggesting an important role for EXOV in phenotypic evolution. We observed significant differentiation of morphological changes for all phenotypes assessed in genome-edited and T-DNA insertional single mutants and in double T-DNA insertion mutants in EXOV and EXOVL. We discovered a substantial divergence of phenotypic effects by principal component analyses, suggesting neofunctionalization of the new gene. These results reveal a young gene that plays critical roles in biological processes that underlie morphological evolution in A. thaliana.


2017 ◽  
Vol 372 (1713) ◽  
pp. 20150480 ◽  
Author(s):  
Peter W. H. Holland ◽  
Ferdinand Marlétaz ◽  
Ignacio Maeso ◽  
Thomas L. Dunwell ◽  
Jordi Paps

Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such ‘asymmetric evolution’ seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.


2008 ◽  
Vol 25 (3) ◽  
pp. 591-602 ◽  
Author(s):  
Federico G. Hoffmann ◽  
Juan C. Opazo ◽  
Jay F. Storz

PLoS Biology ◽  
2004 ◽  
Vol 2 (7) ◽  
pp. e207 ◽  
Author(s):  
Andrew Fortna ◽  
Young Kim ◽  
Erik MacLaren ◽  
Kriste Marshall ◽  
Gretchen Hahn ◽  
...  

2020 ◽  
Author(s):  
Yiying Liao ◽  
Zhiming Liu ◽  
Andrew W. Gichira ◽  
Min Yang ◽  
Ruth Wambui Mbichi ◽  
...  

Abstract BackgroundHSF (Heat shock factor) genes are essential in the irreplaceable functions in some of the basic developmental pathways in plants. Despite the extensive studies on the structure, function diversification, and evolution of HSF, their divergent history and gene duplication pattern remain unsolved. To further illustrate the probable divergent patterns in these subfamilies, we visited the evolutionary history of the HSF via phylogenetic reconstruction and genomic syntenic analyses by taking advantage of the increased sampling of genomic data for pteridophyta, gymnosperms and basal angiosperms. ResultsWe identified a novel clade including HSFA2, HSFA6, HSFA7, HSFA9 with complex relationship, very likely due to orthologous or paralogous genes retained after frequent gene duplication events. We suggested that HSFA9 was derived from HSFA2 through gene duplication in eudicots at ancestral state, and then expanded in a lineage-specific way. Our findings indicated that HSFB3 and HSFB5 emerged before the divergence of ancestral angiosperms, but were lost in common ancestors of monocots. We also presumed that HSFC2 was derived from HSFC1 in ancestral monocots. ConclusionThis work proposes that in the era of early differentiation of angiosperms during the radiation of flowering plants, the member size of HSF gene family was also being adjusted, accompanied with considerable sub- or neo-functionalization. The independent evolution of HSFs in eudicots and monocots, including lineage-specific gene duplication gave rise to a new gene in ancestral eudicots and monocots, and lineage-specific gene loss in ancestral monocots. Our analyses provide essential insights for studying evolution history of multigene family.


Sign in / Sign up

Export Citation Format

Share Document