Causality constraints on nonlocal quantum measurements

1994 ◽  
Vol 49 (6) ◽  
pp. 4331-4338 ◽  
Author(s):  
Sandu Popescu ◽  
Lev Vaidman
2010 ◽  
Vol 12 (8) ◽  
pp. 083034 ◽  
Author(s):  
S R Clark ◽  
A J Connor ◽  
D Jaksch ◽  
S Popescu

Author(s):  
Klaus Morawetz

The historical development of kinetic theory is reviewed with respect to the inclusion of virial corrections. Here the theory of dense gases differs from quantum liquids. While the first one leads to Enskog-type of corrections to the kinetic theory, the latter ones are described by quasiparticle concepts of Landau-type theories. A unifying kinetic theory is envisaged by the nonlocal quantum kinetic theory. Nonequilibrium phenomena are the essential processes which occur in nature. Any evolution is built up of involved causal networks which may render a new state of quality in the course of time evolution. The steady state or equilibrium is rather the exception in nature, if not a theoretical abstraction at all.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 889
Author(s):  
Akram Touil ◽  
Kevin Weber ◽  
Sebastian Deffner

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Valeria Cimini ◽  
Ilaria Gianani ◽  
Marco Sbroscia ◽  
Jan Sperling ◽  
Marco Barbieri
Keyword(s):  

1999 ◽  
Vol 13 (28) ◽  
pp. 3369-3382 ◽  
Author(s):  
Y. N. SRIVASTAVA ◽  
G. VITIELLO ◽  
A. WIDOM

In order to understand the Landau–Lifshitz conjecture on the relationship between quantum measurements and the thermodynamic second law, we discuss the notion of "diabatic" and "adiabatic" forces exerted by the quantum object on the classical measurement apparatus. The notion of heat and work in measurements is made manifest in this approach and the relationship between information entropy and thermodynamic entropy is explored.


Sign in / Sign up

Export Citation Format

Share Document