Quantum measurements, the phenomenon of life, and time arrow: three great problems of physics (in Ginzburg's terminology) and their interrelation

2007 ◽  
Vol 177 (4) ◽  
pp. 415 ◽  
Author(s):  
M.B. Menskii
2020 ◽  
pp. 189-202
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Henry is trapped in a burning building because of Eve’s mischief. Henry’s entanglement with the hot environment is ominous: his states receive excessive energy from the environment, threatening his physiology. Can quantum effects rescue Henry from the fire? Unexpectedly, Eve comes to his rescue. She frequently measures his energy in a “quantum non-demolition” (QND) fashion which is expected to keep his state intact. Surprisingly, Henry grows hotter or colder depending on Eve’s measurement rate! These quantum effects seem to violate the laws of thermodynamics. Engraved in stone as these laws and the ensuing time directionality (time arrow) may be, they fail if the system is examined too frequently, whence time arrow loses its meaning. One may speculate over the role of such anomalies in the Big Bang. These anomalies support Parmenides’ view that time flow is determined by the observer’s choices. The appendix to this chapter elaborates on the dynamics induced by system–environment interaction changes.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Grit Kalies

AbstractQuantum mechanics for describing the behavior of microscopic entities and thermodynamics for describing macroscopic systems exhibit separate time concepts. Whereas many theories of modern physics interpret processes as reversible, in thermodynamics, an expression for irreversibility and the so-called time arrow has been developed: the increase of entropy. The divergence between complete reversibility on the one hand and irreversibility on the other is called the paradox of time. Since more than hundred years many efforts have been devoted to unify the time concepts. So far, the efforts were not successful. In this paper a solution is proposed on the basis of matter-energy equivalence with an energetic distinction between matter and mass. By refraining from interpretations predominant in modern theoretical physics, the first and second laws of thermodynamics can be extended to fundamental laws of nature, which are also valid at quantum level.


1999 ◽  
Vol 10 (07) ◽  
pp. 1205-1228 ◽  
Author(s):  
E. V. KRISHNAMURTHY

The important requirements are stated for the success of quantum computation. These requirements involve coherent preserving Hamiltonians as well as exact integrability of the corresponding Feynman path integrals. Also we explain the role of metric entropy in dynamical evolutionary system and outline some of the open problems in the design of quantum computational systems. Finally, we observe that unless we understand quantum nondemolition measurements, quantum integrability, quantum chaos and the direction of time arrow, the quantum control and computational paradigms will remain elusive and the design of systems based on quantum dynamical evolution may not be feasible.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 889
Author(s):  
Akram Touil ◽  
Kevin Weber ◽  
Sebastian Deffner

In classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements. The validity of the relation is demonstrated for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the weak-coupling regime.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Valeria Cimini ◽  
Ilaria Gianani ◽  
Marco Sbroscia ◽  
Jan Sperling ◽  
Marco Barbieri
Keyword(s):  

1999 ◽  
Vol 13 (28) ◽  
pp. 3369-3382 ◽  
Author(s):  
Y. N. SRIVASTAVA ◽  
G. VITIELLO ◽  
A. WIDOM

In order to understand the Landau–Lifshitz conjecture on the relationship between quantum measurements and the thermodynamic second law, we discuss the notion of "diabatic" and "adiabatic" forces exerted by the quantum object on the classical measurement apparatus. The notion of heat and work in measurements is made manifest in this approach and the relationship between information entropy and thermodynamic entropy is explored.


Author(s):  
David Wallace

Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made difficult by the fact that the ‘measurement problem’, as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This paper has two goals: firstly (§§1–2), to present an account of how quantum measurements are actually dealt with in modern physics (hint: it does not involve a collapse of the wave function) and to state the measurement problem from the perspective of that account; and secondly (§§3–4), to clarify what role decoherence plays in modern measurement theory and what effect it has on the various strategies that have been proposed to solve the measurement problem.


Sign in / Sign up

Export Citation Format

Share Document