scholarly journals Statistical inference, distinguishability of quantum states, and quantum entanglement

1997 ◽  
Vol 56 (6) ◽  
pp. 4452-4455 ◽  
Author(s):  
V. Vedral ◽  
M. B. Plenio ◽  
K. Jacobs ◽  
P. L. Knight
Author(s):  
Richard Healey

Quantum entanglement is popularly believed to give rise to spooky action at a distance of a kind that Einstein decisively rejected. Indeed, important recent experiments on systems assigned entangled states have been claimed to refute Einstein by exhibiting such spooky action. After reviewing two considerations in favor of this view I argue that quantum theory can be used to explain puzzling correlations correctly predicted by assignment of entangled quantum states with no such instantaneous action at a distance. We owe both considerations in favor of the view to arguments of John Bell. I present simplified forms of these arguments as well as a game that provides insight into the situation. The argument I give in response turns on a prescriptive view of quantum states that differs both from Dirac’s (as stated in Chapter 2) and Einstein’s.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 773
Author(s):  
Danko D. Georgiev

Identifying the physiological processes in the central nervous system that underlie our conscious experiences has been at the forefront of cognitive neuroscience. While the principles of classical physics were long found to be unaccommodating for a causally effective consciousness, the inherent indeterminism of quantum physics, together with its characteristic dichotomy between quantum states and quantum observables, provides a fertile ground for the physical modeling of consciousness. Here, we utilize the Schrödinger equation, together with the Planck–Einstein relation between energy and frequency, in order to determine the appropriate quantum dynamical timescale of conscious processes. Furthermore, with the help of a simple two-qubit toy model we illustrate the importance of non-zero interaction Hamiltonian for the generation of quantum entanglement and manifestation of observable correlations between different measurement outcomes. Employing a quantitative measure of entanglement based on Schmidt decomposition, we show that quantum evolution governed only by internal Hamiltonians for the individual quantum subsystems preserves quantum coherence of separable initial quantum states, but eliminates the possibility of any interaction and quantum entanglement. The presence of non-zero interaction Hamiltonian, however, allows for decoherence of the individual quantum subsystems along with their mutual interaction and quantum entanglement. The presented results show that quantum coherence of individual subsystems cannot be used for cognitive binding because it is a physical mechanism that leads to separability and non-interaction. In contrast, quantum interactions with their associated decoherence of individual subsystems are instrumental for dynamical changes in the quantum entanglement of the composite quantum state vector and manifested correlations of different observable outcomes. Thus, fast decoherence timescales could assist cognitive binding through quantum entanglement across extensive neural networks in the brain cortex.


2009 ◽  
Vol 07 (03) ◽  
pp. 587-593 ◽  
Author(s):  
SHAO-MING FEI ◽  
XIANQING LI-JOST

We study quantum states for which the PPT criterion is both sufficient and necessary for separability. We present a class of 3 × 3 bipartite mixed states and show that these states are separable if and only if they are PPT.


Author(s):  
Michael G. Raymer

What is quantum entanglement? Quantum entanglement is a characteristic of special quantum states describing two or more quantum entities, such as photons or electrons. It represents a form of measurement correlation that occurs only in quantum physics. Recall from Chapter 8 that...


2021 ◽  
Author(s):  
Arjun Berera ◽  
Luigi Del Debbio

Designed for a two-semester advanced undergraduate or graduate level course, this distinctive and modern textbook provides students with the physical intuition and mathematical skills to tackle even complex problems in quantum mechanics with ease and fluency. Beginning with a detailed introduction to quantum states and Dirac notation, the book then develops the overarching theoretical framework of quantum mechanics, before explaining physical quantum mechanical properties such as angular momentum and spin. Symmetries and groups in quantum mechanics, important components of current research, are covered at length. The second part of the text focuses on applications, and includes a detailed chapter on quantum entanglement, one of the most exciting modern applications of quantum mechanics, and of key importance in quantum information and computation. Numerous exercises are interspersed throughout the text, expanding upon key concepts and further developing students' understanding. A fully worked solutions manual and lecture slides are available for instructors.


Author(s):  
Alyssa Ney

In quantum mechanics, entangled states are not exotic or rare. Rather, entanglement is the norm and so the metaphysical consequences of entanglement are a central issue for anyone wishing to provide an ontological interpretation of the various formulations of quantum mechanics. This chapter presents the argument for wave function realism from quantum entanglement, which says that wave function realism is necessary if one wants an ontological interpretation that does not conflate distinct quantum states. It explains quantum entanglement and how postulating a wave function in higher dimensions can help to metaphysically ground the phenomenon. The chapter ultimately concludes that the argument from quantum entanglement fails as there are several rival positions that can also explain quantum entanglement and recover the distinctions between different entangled states. These include the primitive ontology approach, various other holisms, ontic structural realism, spacetime state realism, and the multi-field approach.


2020 ◽  
Vol 50 (11) ◽  
pp. 1645-1685
Author(s):  
Joanna Luc

AbstractThis paper investigates various properties that may by possessed by quantum states, which are believed to be specifically “quantum” (entanglement, nonlocality, steerability, negative conditional entropy, non-zero quantum discord, non-zero quantum super discord and contextuality) and their opposites. It also considers their “absolute” counterparts in the following sense: a given state has a given property absolutely if after an arbitrary unitary transformation it still possesses it. The known relations between the listed properties and between their absolute counterparts are summarized. It is proven that the only two-qubit state that has zero quantum discord absolutely is the maximally mixed state. Finally, related conceptual issues concerning the terms “classical” and “quantum” are discussed.


Sign in / Sign up

Export Citation Format

Share Document