Relativistic Dirac-Fock exchange and Breit interaction energy functionals based on the local-density approximation and the self-consistent multiplicative constant method

2004 ◽  
Vol 69 (5) ◽  
Author(s):  
Valentin V. Karasiev ◽  
Eduardo V. Ludeña ◽  
Olga A. Shukruto
1994 ◽  
Vol 50 (1) ◽  
pp. 171-176 ◽  
Author(s):  
David A. Liberman ◽  
James R. Albritton ◽  
Brian G. Wilson ◽  
William E. Alley

1990 ◽  
Vol 213 ◽  
Author(s):  
W. Lin ◽  
Jian-Hua Xu ◽  
A.J. Freeman

ABSTRACTThe electronic structures and cohesive properties of the intermetallics Ni3V, Co3V, and Fe3V in the L12 structure have been studied using the self-consistent total energy linear muffin-tin orbital method based on the local density approximation. The simple rigid-band concept appears to be adequate to explain the structural stability of these compounds. Further,the structural stability of the pseudobinary compounds (Ni,Co,Fe)3V has been investigated based on the rigid-band scheme. The correlation between the electronic concentration and the crystal structure is shown to be related to the fill-up of the bonding states.


1996 ◽  
Vol 03 (01) ◽  
pp. 687-693 ◽  
Author(s):  
HENRIK GRÖNBECK ◽  
ARNE ROSÉN

The initial chemisorption of O 2 and CO on small copper clusters in the range from six to nine atoms has been investigated using a self-consistent jellium description of the clusters. The calculations were performed within the local-density approximation expanding the wave functions in a linear combination of atomic and spherical jellium orbitals. The results indicate a strong size dependence in the chemisorption energies. O 2 was found to be most strongly bound to the Cu 9 cluster while COCu 6 was the most stable product in the case of CO chemisorption. The observations are consistent with experiments and the underlying reasons were traced to differences in cluster-adsorbate hybridization and charge-transfer mechanisms.


Sign in / Sign up

Export Citation Format

Share Document