scholarly journals Discrimination and synthesis of recursive quantum states in high-dimensional Hilbert spaces

2015 ◽  
Vol 91 (4) ◽  
Author(s):  
David S. Simon ◽  
Casey A. Fitzpatrick ◽  
Alexander V. Sergienko
Author(s):  
Miguel Ángel Solís-Prosser ◽  
Omar Jiménez ◽  
Aldo Delgado ◽  
Leonardo Neves

Abstract The impossibility of deterministic and error-free discrimination among nonorthogonal quantum states lies at the core of quantum theory and constitutes a primitive for secure quantum communication. Demanding determinism leads to errors, while demanding certainty leads to some inconclusiveness. One of the most fundamental strategies developed for this task is the optimal unambiguous measurement. It encompasses conclusive results, which allow for error-free state retrodictions with the maximum success probability, and inconclusive results, which are discarded for not allowing perfect identifications. Interestingly, in high-dimensional Hilbert spaces the inconclusive results may contain valuable information about the input states. Here, we theoretically describe and experimentally demonstrate the discrimination of nonorthogonal states from both conclusive and inconclusive results in the optimal unambiguous strategy, by concatenating a minimum-error measurement at its inconclusive space. Our implementation comprises 4- and 9-dimensional spatially encoded photonic states. By accessing the inconclusive space to retrieve the information that is wasted in the conventional protocol, we achieve significant increases of up to a factor of 2.07 and 3.73, respectively, in the overall probabilities of correct retrodictions. The concept of concatenated optimal measurements demonstrated here can be extended to other strategies and will enable one to explore the full potential of high-dimensional nonorthogonal states for quantum communication with larger alphabets.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Beatrice Da Lio ◽  
Daniele Cozzolino ◽  
Nicola Biagi ◽  
Yunhong Ding ◽  
Karsten Rottwitt ◽  
...  

AbstractQuantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols. Nonetheless, the reliable transmission through fiber links of high-dimensional quantum states remains an open challenge that must be addressed to boost their application. Here, we demonstrate the reliable transmission over a 2-km-long multicore fiber of path-encoded high-dimensional quantum states. Leveraging on a phase-locked loop system, a stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of a secret key rate.


2020 ◽  
Author(s):  
Robert Fickler ◽  
Markus Hiekkamäki ◽  
Florian Brandt ◽  
Frederic Bouchard ◽  
Shashi Prabhakar ◽  
...  

Author(s):  
Mevludin Licina

Dynamical high-dimensional quantum states can be tracked and manipulated in many cases. Using a new theoretical framework approach of manipulating quantum systems, we will show how one can manipulate and introduce parameters that allow tracking and descriptive insight in the dynamics of states. Using quantum topology and other novel mathematical representations, we will show how quantum states behave in critical points when the shift of probability distribution introduces changes.


2021 ◽  
Vol 21 (3&4) ◽  
pp. 233-254
Author(s):  
Quanzhen Ding ◽  
Rupak Chatterjee ◽  
Yuping Huang ◽  
Ting Yu

Temporal modes of photonic quantum states, intrinsically possess high dimensional Hilbert spaces, provide a new framework to develop a robust free-space quantum key distribution (QKD) scheme in a maritime environment. We show that the high-dimensional temporal modes can be used to fulfill a persistent communication channel to achieve high photon-efficiency even in severe weather conditions. We identify the parameter regimes that allow for a high-fidelity quantum information transmission. We also examine how the turbulent environment affects fidelity and entanglement degree in various environmental settings.


Author(s):  
Saverio Francesconi ◽  
Giorgio Maltese ◽  
Felicien Appas ◽  
Arnault Raymond ◽  
Aristide Lemaître ◽  
...  

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 418
Author(s):  
Ivan Šupić ◽  
Daniel Cavalcanti ◽  
Joseph Bowles

Self-testing protocols are methods to determine the presence of shared entangled states in a device independent scenario, where no assumptions on the measurements involved in the protocol are made. A particular type of self-testing protocol, called parallel self-testing, can certify the presence of copies of a state, however such protocols typically suffer from the problem of requiring a number of measurements that increases with respect to the number of copies one aims to certify. Here we propose a procedure to transform single-copy self-testing protocols into a procedure that certifies the tensor product of an arbitrary number of (not necessarily equal) quantum states, without increasing the number of parties or measurement choices. Moreover, we prove that self-testing protocols that certify a state and rank-one measurements can always be parallelized to certify many copies of the state. Our results suggest a method to achieve device-independent unbounded randomness expansion with high-dimensional quantum states.


Author(s):  
Daniel Giovannini ◽  
Jacqui Romero ◽  
Jonathan Leach ◽  
Angela Dudley ◽  
Andrew Forbes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document