scholarly journals High-dimensional temporal mode propagation in a turbulent environment

2021 ◽  
Vol 21 (3&4) ◽  
pp. 233-254
Author(s):  
Quanzhen Ding ◽  
Rupak Chatterjee ◽  
Yuping Huang ◽  
Ting Yu

Temporal modes of photonic quantum states, intrinsically possess high dimensional Hilbert spaces, provide a new framework to develop a robust free-space quantum key distribution (QKD) scheme in a maritime environment. We show that the high-dimensional temporal modes can be used to fulfill a persistent communication channel to achieve high photon-efficiency even in severe weather conditions. We identify the parameter regimes that allow for a high-fidelity quantum information transmission. We also examine how the turbulent environment affects fidelity and entanglement degree in various environmental settings.

Author(s):  
D. Sowmya ◽  
S. Sivasankaran

In the cloud environment, it is difficult to provide security to the monolithic collection of data as it is easily accessed by breaking the algorithms which are based on mathematical computations and on the other hand, it takes much time for uploading and downloading the data. This paper proposes the concept of implementing quantum teleportation i.e., telecommunication + transportation in the cloud environment for the enhancement of cloud security and also to improve speed of data transfer through the quantum repeaters. This technological idea is extracted from the law of quantum physics where the particles say photons can be entangled and encoded to be teleported over large distances. As the transfer of photons called qubits allowed to travel through the optical fiber, it must be polarized and encoded with QKD (Quantum Key Distribution) for the security purpose. Then, for the enhancement of the data transfer speed, qubits are used in which the state of quantum bits can be encoded as 0 and 1 concurrently using the Shors algorithm. Then, the Quantum parallelism will help qubits to travel as fast as possible to reach the destination at a single communication channel which cannot be eavesdropped at any point because, it prevents from creating copies of transmitted quantum key due to the implementation of no-cloning theorem so that the communication parties can only receive the intended data other than the intruders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Beatrice Da Lio ◽  
Daniele Cozzolino ◽  
Nicola Biagi ◽  
Yunhong Ding ◽  
Karsten Rottwitt ◽  
...  

AbstractQuantum key distribution (QKD) protocols based on high-dimensional quantum states have shown the route to increase the key rate generation while benefiting of enhanced error tolerance, thus overcoming the limitations of two-dimensional QKD protocols. Nonetheless, the reliable transmission through fiber links of high-dimensional quantum states remains an open challenge that must be addressed to boost their application. Here, we demonstrate the reliable transmission over a 2-km-long multicore fiber of path-encoded high-dimensional quantum states. Leveraging on a phase-locked loop system, a stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of a secret key rate.


2021 ◽  
Vol 4 (1) ◽  
pp. 98-117
Author(s):  
Norsyahbany Mansor ◽  
Qistina Donna Lee Abdullah

This paper is to deliberate the subjects of the effective communication channel in delivering common motifs in Selayah Keringkam by assessing the local and International tourists’ preference. It is to evaluate the hypotheses Testing On validity of Effective Communication and Common Motif of Selayah Keringkam Towards the communication channel. The finding of this paper is to enhance the implications on developing a significant way to disseminate Selayah Keringkam as a heritage product in Sarawak. This paper will expose a substantial relationship between the independent variables (Common Motif of Selayah Keringkam), the dependent variables (Channels of Communication) and the mediator (Supplement of Effective Communication) as a new framework to the body of knowledge. This research involved 384 respondents with 5 relevant authorities related to answering research questions. The data collected from the fieldwork were analysed using SPSS version 24. The measures used in this article are methodically deliberated using factor analysis and correlation analysis. Lastly, the results of the regression analyses testing on hypotheses and summary of hypotheses assessments are presented.


2016 ◽  
Vol 24 (19) ◽  
pp. 22159 ◽  
Author(s):  
Haize Bao ◽  
Wansu Bao ◽  
Yang Wang ◽  
Ruike Chen ◽  
Chun Zhou ◽  
...  

2020 ◽  
Vol 29 (2) ◽  
pp. 020301
Author(s):  
Shu-Jing Zhang ◽  
Chen Xiao ◽  
Chun Zhou ◽  
Xiang Wang ◽  
Jian-Shu Yao ◽  
...  

2020 ◽  
Vol 18 (06) ◽  
pp. 2050031
Author(s):  
Ali Mehri-Toonabi ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this work, we introduce a high-dimensional polarization-phase (PoP)-based quantum key distribution protocol, briefly named PoP[Formula: see text], where [Formula: see text] is the dimension of a hybrid quantum state including polarization and phase degrees of freedom of the same photon, and [Formula: see text] is the number of mutually unbiased bases. We present a detailed description of the PoP[Formula: see text] protocol as a special case, and evaluate its security against various individual and coherent eavesdropping strategies, and in each case, we compare it with the BB84 and the two-dimensional (TD)-PoP protocols. In all the strategies, the error threshold and the effective transmission rate of the PoP[Formula: see text] protocol are far greater than the other two protocols. Unlike most high-dimensional protocols, the simplicity of producing and detecting the qudits and the use of conventional components (such as traditional single-photon sources and quantum channels) are among the features of the PoP[Formula: see text] protocol.


1994 ◽  
Vol 72 (6) ◽  
pp. 2990-3003 ◽  
Author(s):  
D. Golomb ◽  
D. Kleinfeld ◽  
R. C. Reid ◽  
R. M. Shapley ◽  
B. I. Shraiman

1. The present work relates recent experimental studies of the temporal coding of visual stimuli (McClurkin, Optican, Richmond, and Gawne, Science 253: 675, 1991) to the measurements of the spatiotemporal receptive fields of neurons within the lateral geniculate of primate. 2. We analyze both new and previously described magnocellular and parvocellular single units. The spatiotemporal impulse response function of the unit, defined as the time-resolved average firing rate in response to a weak stimulus flashed at a given location and time, is characterized by the singular value decomposition. This analysis allows one to represent the impulse response by a small number, two to three, of spatial and temporal modes. Both magnocellular and parvocellular units are weakly nonseparable, with major and minor modes that account, respectively, for approximately 78 and 22% of the response. The major temporal mode for both types is essentially identical for the first 100 ms. At later times the response of magnocellular units changes sign and decays slowly, whereas the response of parvocellular units decays relatively rapidly. 3. The spatiotemporal impulse response function completely determines the response of a unit to an arbitrary stimulus when linear response theory is valid. Using the measured impulse response, combined with a rectifying neuronal input-output relation, we calculate the responses to a complete set of spatial luminance patterns constructed of "Walsh" functions. Our predicted temporal responses are in qualitative agreement with those reported for parvocellular units (McClurkin, Optican, Richmond, and Gawne, J. Neurophysiol. 66: 794, 1991). Under the additional assumptions of Poisson statistics for the probability of spiking and a plausible background firing rate, we predict the performance of a unit in the Walsh pattern discrimination task as quantified by mutual information. Our prediction is again consistent with the reported results. 4. Last, we consider the issue of temporal coding within linear response. For stimuli presented for fixed time intervals, the singular value decomposition provides a natural relation between the temporal modes of the neuronal response and the spatial pattern of the stimulus. Although it is tempting to interpret each temporal mode as an independent channel that encodes orthogonal features of the stimulus, successively higher order modes are increasingly unreliable and do not significantly increase the discrimination capabilities of the unit.


2020 ◽  
Vol 6 (37) ◽  
pp. eaaz4487 ◽  
Author(s):  
Margarida Pereira ◽  
Go Kato ◽  
Akihiro Mizutani ◽  
Marcos Curty ◽  
Kiyoshi Tamaki

In theory, quantum key distribution (QKD) offers information-theoretic security. In practice, however, it does not due to the discrepancies between the assumptions used in the security proofs and the behavior of the real apparatuses. Recent years have witnessed a tremendous effort to fill the gap, but the treatment of correlations among pulses has remained a major elusive problem. Here, we close this gap by introducing a simple yet general method to prove the security of QKD with arbitrarily long-range pulse correlations. Our method is compatible with those security proofs that accommodate all the other typical device imperfections, thus paving the way toward achieving implementation security in QKD with arbitrary flawed devices. Moreover, we introduce a new framework for security proofs, which we call the reference technique. This framework includes existing security proofs as special cases, and it can be widely applied to a number of QKD protocols.


Sign in / Sign up

Export Citation Format

Share Document